SDE-based Generative Models

Yuanzhi Zhu SP at CVL

01/Aug/2022

- <u>NCSN</u>
- <u>DDPM</u>
- <u>DDIM</u>
- <u>SDE-based</u>
- Applications

- <u>NCSN</u>
- <u>DDPM</u>
- DDIM
- <u>SDE-based</u>
- Applications

Motivation: Learning the score function $s_{\theta}(x) \sim \nabla_x \log p(x)$ instead

Training Objective: Score Matching for Score Estimation

$$\frac{1}{2}\mathbb{E}_{p_{data}}\left[||s_{\theta}(x) - \nabla_{x}\log p_{data}(x)||_{2}^{2}\right] \longrightarrow \mathbb{E}_{p_{data}}\left[\frac{\operatorname{tr}(\nabla_{x}s_{\theta}(x))}{\operatorname{expensive}} + \frac{1}{2}||s_{\theta}(x)||_{2}^{2}\right]$$

Sampling with Langevin Dynamics

$$x_t = x_{t-1} + \frac{\epsilon}{2} \frac{\nabla_x \log p(x_{t-1})}{\text{score}} + \sqrt{\epsilon} z_t, \text{ where } z_t \sim \mathcal{N}(0, \mathbf{I})$$

*[1907.05600v3] Generative Modeling by Estimating Gradients of the Data Distribution (arxiv.org)

Cheaper Score Matching

1. Denoising Score Matching (DSM)

Matching perturbed data distribution $q_{\sigma}(\tilde{x}) = \int \underline{q_{\sigma}(\tilde{x}|x)} p_{data}(x) dx$

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{x}|x)p_{data}(x)} \left[|| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) ||_{2}^{2} \right]$$

pre-specified noise distribution, i.e. Gaussian

2. Sliced Score Matching: random projections to approximate $tr(\nabla_x s_\theta(x))$

$$\mathbb{E}_{p_v} \mathbb{E}_{p_{data}} \left[v^T s_\theta(x) v - \frac{1}{2} \mid \mid s_\theta(x) \mid \mid_2^2 \right]$$

Low Density Regions Pitfalls: learning the score of p_{data} only

1. Inaccurate score estimation in low data density regions

For regions with $p_{data} \approx 0$, we do not have sufficient data samples for accurate estimation.

2. Slow mixing of Langevin dynamic

$$p_{data}(x) = \pi p_1(x) + (1 - \pi) p_2(x)$$
$$\nabla_x \log p_{data}(x) = \nabla_x \log p_1(x)$$
$$\nabla_x \log p_{data}(x) = \nabla_x \log p_2(x)$$

Training Objective: Score Matching a Sequence of Noise-levels

Large noise: perturbate the data sufficiently to better estimate the low density regions **Small noise**: be able to converge to the true data distribution

Denoising score matching objective for given σ

$$q_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x} \mid x, \sigma^{2}\mathbf{I}) \longrightarrow \nabla_{x} \log q_{\sigma}(\tilde{x}|x) = -(\tilde{x} - x)/\sigma^{2}$$
$$\ell(\theta; \sigma) \triangleq \frac{1}{2} \mathbb{E}_{p_{data}(x)} \mathbb{E}_{\tilde{x} \sim \mathcal{N}(x, \sigma^{2}\mathbf{I})} \mid| s_{\theta}(\tilde{x}, \sigma) + \frac{\tilde{x} - x}{\sigma^{2}} \mid|_{2}^{2}$$

Final objective

$$\mathcal{L}(\theta; \{\sigma_i\}_{i=1}^L) \triangleq \frac{1}{L} \sum_{i=1}^L \frac{\lambda(\sigma_i)\ell(\theta; \sigma_i)}{\text{coefficient function}}$$

NCSN Inference: via Annealed Langevin Dynamics

A sequence of positive noise scales
$$\sigma_{min} = \sigma_1 < \sigma_2 < \dots < \sigma_L = \sigma_{max}$$

 $p_{\sigma_{min}}(x) \approx p_{data}(x)$
 $p_{\sigma_{max}}(x) \approx \mathcal{N}(x; 0, \sigma_{max}^2 \mathbf{I})$

Outer loop: responsible for transitioning to next noise levels **Inner loop**: takes T steps to guarantee the samples are from p_{σ_i}

- <u>NCSN</u>
- <u>DDPM</u>
- DDIM
- <u>SDE-based</u>
- Applications

First Attempt from Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Main Ideas:

- inspired by non-equilibrium statistical physics
- systematically and slowly destroy structure in a data distribution (iterative forward diffusion)
- then **learn a reverse diffusion process** that restores structure in data(restore data distribution)

Math come soon in DDPM

Jascha Sohl-Dickstein is also author of *RealNVP* and *Score-based generative model through SDE*, now is working on ML theory and NLP

Forward Diffusion Process

$$q(x_{1:T}|x_0) := \prod_{t=1}^T q(x_t|x_{t-1})$$

Each Step

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \underbrace{\sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}}_{\text{norm invariant}}) \quad \text{or} \quad x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} z_{t-1}$$

variance schedule β_t controls the diffusion processing

For arbitrary *t*

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)\mathbf{I}) \qquad \alpha_t = 1 - \beta_t \text{ and } \bar{\alpha}_t = \prod_{i=1}^{n} \alpha_i$$
$$x_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \cdot z_t$$

T

Reverse Diffusion Process $p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t) \quad p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_t, t), \boldsymbol{\Sigma}_{\theta}(x_t, t))$

Reverse when condition on x_0

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)} \\ \propto \exp\left(-\frac{1}{2}\left(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{\beta_t} + \frac{(x_{t-1} - \sqrt{\overline{\alpha}_{t-1}}x_0)^2}{1 - \overline{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\overline{\alpha}_t}x_0)^2}{1 - \overline{\alpha}_t}\right)\right) \\ = \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \overline{\alpha}_{t-1}}\right)x_{t-1}^2 - \left(\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1 - \overline{\alpha}_{t-1}}x_0\right)x_{t-1} + C(x_t, x_0)\right)\right) \\ \rightarrow q(x_{t-1}|x_t, x_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t\mathbf{I}) \\ \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t}x_t + \frac{\sqrt{\overline{\alpha}_{t-1}\beta_t}}{1 - \overline{\alpha}_t}x_0 = \frac{1}{\sqrt{\alpha_t}}\left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha}_t}}\mathbf{z}_t\right) \qquad \frac{1 - \overline{\alpha}_{t-1}}{1 - \overline{\alpha}_t} \cdot \beta_t \\ z_t \text{ is the noise between } x_t \text{ and } x_0$$

Negative Log Likelihood to Variational Lower Bound

$$\begin{aligned} -\log p_{\theta}(\mathbf{x}_{0}) &\leq -\log p_{\theta}(\mathbf{x}_{0}) + D_{\mathrm{KL}}(q(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \| p_{\theta}(\mathbf{x}_{1:T}|\mathbf{x}_{0})) \\ &= -\log p_{\theta}(\mathbf{x}_{0}) + \mathbb{E}_{\mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})/p_{\theta}(\mathbf{x}_{0})} \right] \\ &= -\log p_{\theta}(\mathbf{x}_{0}) + \mathbb{E}_{q} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} + \log p_{\theta}(\mathbf{x}_{0}) \right] \\ &= \mathbb{E}_{q} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \right] \\ &\text{Let } L_{\mathrm{VLB}} = \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \right] \geq -\mathbb{E}_{q(\mathbf{x}_{0})} \log p_{\theta}(\mathbf{x}_{0}) \end{aligned}$$

Parameterization for Training Loss

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \Big[\log \frac{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \Big] = \mathbb{E}_{q} \Big[\log \frac{\prod_{t=1}^{T} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{q(\mathbf{x}_{T} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{T})} + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})} - \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1}) \Big]$$
 Known
$$= \mathbb{E}_{q} \Big[\underbrace{D_{\text{KL}}(q(\mathbf{x}_{T} | \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t=2}^{T} \underbrace{D_{\text{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}))}_{L_{t}} - \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1}) \Big] \\ p_{\theta}(x_{t-1} | x_{t}) = \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_{t}, t), \boldsymbol{\Sigma}_{\theta}(x_{t}, t)) \begin{bmatrix} \boldsymbol{\mu}_{\theta}(x_{t}, t) &= \frac{1}{\sqrt{\alpha_{t}}}(x_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} z_{\theta}(x_{t}, t)) \\ \boldsymbol{\Sigma}_{\theta}(x_{t}, t) &= \sigma_{t}^{2} \mathbf{I} \end{bmatrix}$$

Model The Noise(Residual)

$$L_t^{\text{simple}} = \mathbb{E}_{x_0, z_t} \left[\| z_t - z_\theta(\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} z_t, t) \|^2 \right]$$

Nonetheless, it is just another parameterization of $p_{\theta}(x_{t-1}|x_t)$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_t, t), \boldsymbol{\Sigma}_{\theta}(x_t, t))$$

$$\boldsymbol{\mu}_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} z_{\theta}(x_t, t))$$

$$\boldsymbol{\Sigma}_{\theta}(x_t, t) = \sigma_t^2 \mathbf{I}$$

$$two options^{\dagger} \quad \sigma^2 = \begin{cases} \beta_t \\ \frac{1 - \hat{\alpha}_{t-1}}{1 - \hat{\alpha}_t} \beta_t \end{cases}$$

Algorithm 1 Training

1: repeat

2:
$$\mathbf{x}_0 \sim q(\mathbf{x}_0)$$

3:
$$t \sim \text{Uniform}(\{1, \dots, T\})$$

4:
$$\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \mathbf{z}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

-

6: until converged

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T, ..., 1$ do
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = \mathbf{0}$
4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{z}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
5: end for

6: return \mathbf{x}_0

[†] Covariance has analytical optimal form (Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models) ¹⁷

- <u>NCSN</u>
- <u>DDPM</u>
- <u>DDIM</u>
- <u>SDE-based</u>
- Applications

Variational Inference for Non-Markovian Forward Processes

$$-\log p_{\theta}(\mathbf{x}_{0}) \leq -\log p_{\theta}(\mathbf{x}_{0}) + D_{\mathrm{KL}}(q(\mathbf{x}_{1:T}|\mathbf{x}_{0}) || p_{\theta}(\mathbf{x}_{1:T}|\mathbf{x}_{0}))$$

Model this directly
$$q_{\sigma}(x_{1:T}|x_{0}) = q_{\sigma}(x_{T}|x_{0}) \prod_{t=2}^{T} q_{\sigma}(x_{t-1}|x_{t}, x_{0})$$

Reverse Process: deterministic given x_t, x_0

$$x_{t-1} = \sqrt{\alpha_{t-1}} x_0 + \sqrt{1 - \alpha_{t-1}} \cdot \epsilon_{t-1} = \sqrt{\alpha_{t-1}} x_0 + \sqrt{1 - \alpha_{t-1}} - \sigma_t^2 \cdot \epsilon_t + \sigma_t \epsilon_t$$
$$q_{\sigma}(x_{t-1}|x_t, x_0) = \mathcal{N}(\sqrt{\alpha_{t-1}} x_0 + \sqrt{1 - \alpha_{t-1}} - \sigma_t^2 \cdot \frac{x_t - \sqrt{\alpha_t} x_0}{\sqrt{1 - \alpha_t}}, \sigma_t^2 \mathbf{I})$$

Forward: still Gaussian (non-Markovian)

$$q_{\sigma}(x_t|x_{t-1}, x_0) = \frac{q_{\sigma}(x_{t-1}|x_t, x_0)q_{\sigma}(x_t|x_0)}{q_{\sigma}(x_{t-1}|x_0)}$$

[2010.02502] Denoising Diffusion Implicit Models (arxiv.org) α_t in DDIM is $\bar{\alpha}_t$ in DDPM.

Given: noisy observation x_t

Model difference between x_0 and x_t

Prediction of the corresponding $\hat{x}_0(x_t) = f_{\theta}^{(t)}(x_t) = (x_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(x_t)) / \sqrt{\alpha_t}$

$$p_{\theta}^{(t)}(x_{t-1}|x_t) = \begin{cases} \mathcal{N}(f_{\theta}^{(1)}(x_1), \sigma_1^2 I) & \text{if } t = 1\\ q_{\sigma}(x_{t-1}|x_t, f_{\theta}^{(t)}(x_t)) & \text{otherwise} \end{cases}$$

Variational Inference Objective (equivalent to objective in DDPM for certain weights)

$$J_{\sigma}(\epsilon_{\theta}) := \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} [\log q_{\sigma}(\boldsymbol{x}_{1:T} | \boldsymbol{x}_{0}) - \log p_{\theta}(\boldsymbol{x}_{0:T})]$$

$$= \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} \left[\log q_{\sigma}(\boldsymbol{x}_{T} | \boldsymbol{x}_{0}) + \sum_{t=2}^{T} \log q_{\sigma}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}, \boldsymbol{x}_{0}) - \sum_{t=1}^{T} \log p_{\theta}^{(t)}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}) - \log p_{\theta}(\boldsymbol{x}_{T}) \right]$$
Surrogate Objective $L_{t}^{\text{simple}} = \mathbb{E}_{\boldsymbol{x}_{0}, \boldsymbol{z}_{t}} \left[\| \boldsymbol{z}_{t} - \boldsymbol{z}_{\theta}(\sqrt{\bar{\alpha}_{t}}\boldsymbol{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{z}_{t}, t) \|^{2} \right]$ Same as in DDPM!

Sampling from Generalized Generative Processes
$$p_{\theta}^{(t)}(x_{t-1}|x_t)$$

$$x_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{x_t - \sqrt{1 - \alpha_t}\epsilon_{\theta}^{(t)}(x_t)}{\sqrt{\alpha_t}}\right)}_{\text{predicted } x_0} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_{\theta}^{(t)}(x_t)}_{\text{direction pointing to } x_t} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}}$$

$$\sigma_t := \eta \sqrt{(1 - \alpha_{t-1}) / (1 - \alpha_t)} \sqrt{1 - \alpha_t / \alpha_{t-1}}$$

- **DDPM:** $\eta = 1$ (forward process becomes Markovian (different noise schedule from <u>vanilla DDPM</u>))
- **DDIM:** $\eta = 0$ (forward process becomes deterministic)

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta = 1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T = 1000 steps, and S < T can be seen as simulating DDPMs trained with S steps), and $\eta = 0.0$ indicates DDIM.

CIFAR10 (32×32)					CelebA (64×64)						
	S	10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
~	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

Accelerated Generation Processes

Denoising surrogate objective does not depend on the specific forward procedure $q_{\sigma}(x_{t-1}|x_0)$

Consider the forward process as defined on a subset $\tau = [\tau_1, \tau_2, \dots, \tau_{\dim(\tau)}] \subset [1, 2, \dots, T]$

$$q_{\sigma,\tau}(x_{\tau_{i-1}}|x_{\tau_t},x_0) = \mathcal{N}(x_{\tau_{i-1}};\sqrt{\bar{\alpha}_{t-1}}x_0 + \sqrt{1-\bar{\alpha}_{t-1}-\sigma_t^2}\frac{x_{\tau_i}-\sqrt{\bar{\alpha}_t}x_0}{\sqrt{1-\bar{\alpha}_t}},\sigma_t^2\mathbf{I})$$

The generative process now samples latent variables according to reversed(τ), which we term (sampling) *trajectory*

 \rightarrow Train a model with arbitrary number forward steps but only sample from some of them in the generative process

Relevance to Neural ODEs

$$x_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{x_t - \sqrt{1 - \alpha_t}\epsilon_{\theta}^{(t)}(x_t)}{\sqrt{\alpha_t}}\right)}_{\text{"predicted } x_0 \text{"}} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_{\theta}^{(t)}(x_t)}_{\text{"direction pointing to } x_t \text{"}} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}}$$
$$\implies \underbrace{x_{t-\Delta t}}_{\overline{z-z}} - \underbrace{x_t}_{\overline{z-z}} = \left(\sqrt{\frac{1 - \alpha_{t-\Delta t}}{z}} - \sqrt{\frac{1 - \alpha_t}{z}}\right) \epsilon_{\theta}^{(t)}(x_t)$$

$$\sqrt{\alpha_{t-\Delta t}} \quad \sqrt{\alpha_{t}} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta t} \right)^{-1} \quad \left(\bigvee \quad \alpha_{t-\Delta t} \quad \bigvee \quad \alpha_{t-\Delta$$

$$\sigma := \sqrt{\frac{1-\alpha}{\alpha}} \qquad \Longrightarrow d\bar{x}(t) = \epsilon_{\theta}^{(t)} \left(\frac{\bar{x}(t)}{\sqrt{\sigma^2 + 1}}\right) d\sigma(t) \qquad \text{Variance-Exploding SDE soon}$$
$$\bar{x} := \frac{x}{\sqrt{\alpha}}$$

- <u>NCSN</u>
- <u>DDPM</u>
- DDIM
- <u>SDE-based</u>
- Applications

Model diffusion process as solution of Itô SDE (continuous time)

$$dx = f(x, t)dt + g(t)dw$$

Generating samples by reversing the SDE

$$dx = [f(x,t) - g(t)^2 \nabla_x \log p_t(x)] dt + g(t) d\bar{w}$$

Training Objective (DSM) $\theta^* = \arg \min \mathbb{E}_{t \sim U(0,T)} \left\{ \lambda(t) \mathbb{E}_{x(0)} \mathbb{E}_{x(t)|x(0)} [||s_{\theta}(x(t), t) - \nabla_{x(t)} \log p_{0t}(x(t)|x(0))||_2^2] \right\}$ known Gaussian when f(x, t) if affine

Discretizations

dx = f(x, t)dt + g(t)dw

SDE Form	Discrete Markov Chain	SDE Expression		
Variance Exploding (VE) SDE (SMLD)	$x_i = x_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} z_{i-1}$	$\mathrm{d}x = \sqrt{\frac{\mathrm{d}[\sigma^2(t)]}{\mathrm{d}t}}\mathrm{d}w$		
Variance Preserving (VP) SDE (DDPM)	$x_i = \sqrt{1 - \beta_i} x_{i-1} + \sqrt{\beta_i} z_{i-1}$	$\mathrm{d}x = \frac{1}{2}\beta(t)x\mathrm{d}t + \sqrt{\beta(t)}\mathrm{d}w$		

Reverse SDE Discretization $x_i = x_{i+1} - f_{i+1}(x_{i+1}) + g_{i+1}g_{i+1}^T s_{\theta}(x_{i+1}, i+1) + g_{i+1}z_{i+1}$

Predictor-Corrector (PC) Samplers

- 1. Predictor: general-purpose numerical SDE solvers
- 2. Corrector: score-based MCMC (i.e. Langevin MCMC)

Ensure samples on the desired manifold

DDPM: predictor only SMLD: corrector only

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)				
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\max}^2 \mathbf{I})$ 2: for $i = N - 1$ to 0 do	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$ 2: for $i = N - 1$ to 0 do				
3: $\mathbf{x}'_{i} \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2}) \mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\sigma_{i+1}^{2} - \sigma_{i}^{2}} \mathbf{z}$	3: $\mathbf{x}'_{i} \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, i+1)$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor				
6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\boldsymbol{\theta}} * (\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$				
9: return \mathbf{x}_0	9: return \mathbf{x}_0				

Relationship between **Bayesian Posterior** and **Reverse SDE**

$$\begin{split} \boldsymbol{x}_{t+\Delta t} - \boldsymbol{x}_t &= \boldsymbol{f}_t(\boldsymbol{x}_t)\Delta t + g_t\sqrt{\Delta t}\boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ \boldsymbol{x}_{t+\Delta t} - \boldsymbol{x}_t &= \boldsymbol{f}_t(\boldsymbol{x}_t)\Delta t + g_t\sqrt{\Delta t}\boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ p(\boldsymbol{x}_{t+\Delta t}|\boldsymbol{x}_t) &= \frac{p(\boldsymbol{x}_{t+\Delta t}|\boldsymbol{x}_t)p(\boldsymbol{x}_t)}{p(\boldsymbol{x}_{t+\Delta t})} = p(\boldsymbol{x}_{t+\Delta t}|\boldsymbol{x}_t)\exp(\log p(\boldsymbol{x}_t) - \log p(\boldsymbol{x}_{t+\Delta t}))) \\ &\propto \exp\left(-\frac{\|\boldsymbol{x}_{t+\Delta t}-\boldsymbol{x}_t-\boldsymbol{f}_t(\boldsymbol{x}_t)\Delta t\|^2}{2g_t^2\Delta t} + \log p(\boldsymbol{x}_t) - \log p(\boldsymbol{x}_{t+\Delta t})\right) \right) \\ &\log p(\boldsymbol{x}_{t+\Delta t}) \approx \log p(\boldsymbol{x}_t) + (\boldsymbol{x}_{t+\Delta t}-\boldsymbol{x}_t)\cdot\nabla_{\boldsymbol{x}_t}\log p(\boldsymbol{x}_t) - \log p(\boldsymbol{x}_{t+\Delta t})\right) \\ &p(\boldsymbol{x}_t|\boldsymbol{x}_{t+\Delta t}) \approx \log p(\boldsymbol{x}_t) + (\boldsymbol{x}_{t+\Delta t}-\boldsymbol{x}_t)\cdot\nabla_{\boldsymbol{x}_t}\log p(\boldsymbol{x}_t) + \Delta t\frac{\partial}{\partial t}\log p(\boldsymbol{x}_t) \\ &p(\boldsymbol{x}_t|\boldsymbol{x}_{t+\Delta t}) \propto \exp\left(-\frac{\|\boldsymbol{x}_{t+\Delta t}-\boldsymbol{x}_t-[\boldsymbol{f}_t(\boldsymbol{x}_t)-g_t^2\nabla_{\boldsymbol{x}_t}\log p(\boldsymbol{x}_t)]\Delta t\|^2}{2g_t^2\Delta t}\right) \\ &\approx \exp\left(-\frac{\|\boldsymbol{x}_t-\boldsymbol{x}_{t+\Delta t}+[\boldsymbol{f}_{t+\Delta t}(\boldsymbol{x}_{t+\Delta t})-g_{t+\Delta t}^2\nabla_{\boldsymbol{x}_{t+\Delta t}}\log p(\boldsymbol{x}_{t+\Delta t})]\Delta t\|^2}{2g_{t+\Delta t}^2\Delta t}\right) \end{split}$$

$$doldsymbol{x} = ig[oldsymbol{f}_t(oldsymbol{x}) - g_t^2
abla_{oldsymbol{x}} \log p_t(oldsymbol{x})ig] dt + g_t doldsymbol{w}$$

Sampling: DDPM and SDE point of views (equivalent up to first order)

The ancestral sampling of DDPM matches its reverse diffusion counterpart when $\beta_i \approx 0$ for all *i*

$$\begin{array}{l} \textbf{Bayesian Posterior} \\ \textbf{x}_{i} = \frac{1}{\sqrt{1 - \beta_{i+1}}} (\textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1)) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(1 + \frac{1}{2} \beta_{i+1} + o(\beta_{i+1})\right) (\textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1)) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ \approx \left(1 + \frac{1}{2} \beta_{i+1}\right) (\textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1)) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(1 + \frac{1}{2} \beta_{i+1}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \frac{1}{2} \beta_{i+1}^{2} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ \approx \left(1 + \frac{1}{2} \beta_{i+1}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left[2 - \left(1 - \frac{1}{2} \beta_{i+1}\right)\right] \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ \approx \left[2 - \left(1 - \frac{1}{2} \beta_{i+1}\right)\right] \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ \approx \left[2 - \left(1 - \frac{1}{2} \beta_{i+1}\right) + o(\beta_{i+1})\right] \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ = \left(2 - \sqrt{1 - \beta_{i+1}}\right) \textbf{x}_{i+1} + \beta_{i+1} \textbf{s}_{\theta} \ast (\textbf{x}_{i+1}, i+1) + \sqrt{\beta_{i+1}} \textbf{z}_{i+1} \\ \end{bmatrix}$$

Model: DDPM and SDE point of views

Score in score-based model is affine transformation of predicted noise in DDPM

$$oldsymbol{x}_{t} = \sqrt{ar{lpha}_{t}} oldsymbol{x}_{0} + \sqrt{1 - ar{lpha}_{t}} \cdot oldsymbol{arepsilon}$$
 Equivalent one step forward
 $oldsymbol{s}_{ heta}(oldsymbol{x}_{t}, t) \approx
abla_{oldsymbol{x}_{t}} \log p(oldsymbol{x}_{t} | oldsymbol{x}_{0})$ Denoising score matching
 $= -rac{oldsymbol{x}_{t} - \sqrt{ar{lpha}_{t}} oldsymbol{x}_{0}}{1 - ar{lpha}_{t}}$ Gaussian assumption
 $= -rac{oldsymbol{arepsilon}}{\sqrt{1 - ar{lpha}_{t}}}$
 $lpha_{oldsymbol{x}_{t}, t)}$
 $\approx -rac{oldsymbol{arepsilon}(oldsymbol{x}_{t}, t)}{\sqrt{1 - ar{lpha}_{t}}}$

ODE form

Fokker-Plank function associated with forward diffusion

$$\begin{split} & \frac{\partial}{\partial t} p_t(\boldsymbol{x}) = -\nabla_{\boldsymbol{x}} \cdot [\boldsymbol{f}_t(\boldsymbol{x}) p_t(\boldsymbol{x})] + \frac{1}{2} g_t^2 \nabla_{\boldsymbol{x}} \cdot \nabla_{\boldsymbol{x}} p_t(\boldsymbol{x}) \\ \text{With} \quad \sigma_t^2 \leq g_t^2 \quad \text{and} \quad \begin{array}{c} \boldsymbol{f}_t & \longrightarrow & \boldsymbol{f}_t(\boldsymbol{x}) - \frac{1}{2} (g_t^2 - \sigma_t^2) \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}) \\ g_t & \longrightarrow & \sigma_t \end{array} \end{split}$$

Reverse

$$d\boldsymbol{x} = \boldsymbol{f}_t(\boldsymbol{x})dt + g_t d\boldsymbol{w} \quad \stackrel{equivalent}{\longleftrightarrow} \quad d\boldsymbol{x} = \left(\boldsymbol{f}_t(\boldsymbol{x}) - \frac{1}{2}(g_t^2 - \sigma_t^2)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})\right)dt + \sigma_t d\boldsymbol{w}$$
$$d\boldsymbol{x} = \left(\boldsymbol{f}_t(\boldsymbol{x}) - \frac{1}{2}(g_t^2 + \sigma_t^2)\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})\right)dt + \sigma_t d\boldsymbol{w}$$

ODE
$$d\boldsymbol{x} = \left(\boldsymbol{f}_t(\boldsymbol{x}) - \frac{1}{2}g_t^2 \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x})\right) dt$$

Comparing with SDEs, ODEs can be solved with larger step sizes as they have no randomness.

Controllable Generation

$$dx = [f(x,t) - g(t)^2 \nabla_x \log p_t(x|y)] dt + g(t) d\bar{w}$$

Bayesian time-dependent classifier
$$dx = \{f(x,t) - g(t)^2 [\nabla_x \log p_t(x) + \nabla_x \log p_t(y|x))\} dt + g(t) d\bar{w}$$

- <u>NCSN</u>
- <u>DDPM</u>
- DDIM
- <u>SDE-based</u>
- Applications

SDEdit: Guided Image Synthesis and Editing with SDE*

*[2108.01073] SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations (arxiv.org)

Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction*

Same idea but different downstream tasks: super-resolution (SR), inpainting, and MRI reconstruction

37 *[2112.05146] Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction

DifFace: Blind Face Restoration with Diffused Error Contraction*

Same idea but different downstream task: Blind face (easier) restoration

Accelerating Diffusion Models via Early Stop of the Diffusion Process*

Get not fully noising image by diffusing output from pre-trained models like GAN and VAE

Image Super-Resolution via Iterative Refinement*

The condition is concatenated with *y*^{*t*} along the channel dimension (cascaded)

Same author also proposed palette for multi-tasks[†], same architecture used for cascaded diffusion[‡]

*[2104.07636] Image Super-Resolution via Iterative Refinement (arxiv.org) †[2111.05826] Palette: Image-to-Image Diffusion Models (arxiv.org) ‡[2106.15282] Cascaded Diffusion Models for High Fidelity Image Generation (arxiv.org)

SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models*

Learn the residual with condition encoded LR (fused as 2D CNN block outputs)

Algorithm 1 Training

- 1: **Input**: LR image and its corresponding HR image pairs $P = \{(x_L^k, x_H^k)\}_{k=1}^K$, total diffusion step T
- 2: **Initialize**: randomly initialized conditional noise predictor ϵ_{θ} and pretrained LR encoder \mathcal{D}
- 3: repeat
- 4: Sample $(x_L, x_H) \sim P$
- 5: Upsample x_L as $up(x_L)$, compute $x_r = x_H up(x_L)$
- 6: Encode LR image x_L as $x_e = \mathcal{D}(x_L)$
- 7: Sample $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and $t \sim \text{Uniform}(\{1, \dots, T\})$
- 8: Take gradient step on

$$\nabla_{\theta} \| \epsilon - \epsilon_{\theta}(x_t, x_e, t) \|, x_t = \sqrt{\bar{\alpha}_t} x_r + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

9: until converged

Algorithm 2 Inference

- 1: Input: LR image x_L , total diffusion step T
- 2: Load: conditional noise predictor ϵ_{θ} and LR encoder \mathcal{D}
- 3: Sample $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 4: Upsample x_L to $up(x_L)$
- 5: Encode LR image x_L as $x_e = \mathcal{D}(x_L)$

6: for
$$t = T, T - 1, \dots, 1$$
 do

7: Sample
$$z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 if $t > 1$, else $z = 0$

8: Compute
$$x_{t-1}$$
 using Eq. (7):

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \epsilon_{\theta}(x_t, x_e, t) \right) + \sigma_{\theta}(x_t, t) z$$
9: end for

10: return $x_0 + up(x_L)$ as SR prediction

ILVR: Conditioning Method for DDPM*

RePaint: Inpainting using Denoising Diffusion Probabilistic Models*

Same idea but different downstream tasks from ILVR

Algorithm 1 Inpainting using our RePaint approach.

1: $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for t = T, ..., 1 do for $u = 1, \ldots, U$ do 3: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\epsilon = \mathbf{0}$ 4: $x_{t-1}^{\text{known}} = \sqrt{\bar{\alpha}_t} x_0 + (1 - \bar{\alpha}_t) \epsilon$ 5: $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ 6: $x_{t-1}^{\text{unknown}} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right) + \sigma_t z$ 7: $x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1-m) \odot x_{t-1}^{\text{unknown}}$ 8: if u < U and t > 1 then 9: $x_t \sim \mathcal{N}(\sqrt{1-\beta_{t-1}}x_{t-1}, \beta_{t-1}\mathbf{I})$ 10: end if 11: 12: end for 13: end for 14: return x_0

Noise Estimation for Generative Diffusion Models*

Figure 1: An overview of our generative process. INS and UNS are respectively the functions initializeNoiseSchedule() and updateNoiseSchedule($\hat{\alpha}$).

Algorithm 3: P_{θ} training procedure			
1:	repeat		
2:	$y_0 \sim q(y_0)$		
3:	$s \sim \mathcal{U}(\{1,,N\})$		
4:	$\sqrt{ar{lpha}} \sim \mathcal{U}([l_{s-1}, l_s])$		
5:	$arepsilon \sim \mathcal{N}(0,I)$		
6:	$y_s = \sqrt{\bar{\alpha}}y_0 + \sqrt{1 - \bar{\alpha} }\varepsilon$		
7:	$\hat{\alpha} = P_{\theta}(y_s)$		
8:	Take gradient descent step on:		
	$\ \log(1-ar{lpha}) - \log(1-\hat{lpha})\ _2$		
9:	until converged		

*[2104.02600] Noise Estimation for Generative Diffusion Models (arxiv.org)

Algorithm 4: Model inference procedure 1: N Number of iterations 2: $y_N \sim \mathcal{N}(0, I)$ 3: $\alpha, \beta = initialNoiseSchedule()$ 4: for n= N, ..., 1 do $z \sim \mathcal{N}(0, I)$ 5: $\hat{\varepsilon} = \varepsilon_{\theta}(y_n, \sqrt{\bar{\alpha}_n})$ or $\varepsilon_{\theta}(y_n, t)$ where $\bar{\alpha}_n \in [l_t, l_{t-1}]$ 6: $y_n - \frac{1 - \alpha_n}{\sqrt{1 - \bar{\alpha}_n}} \hat{\varepsilon}$ $y_{n-1} =$ 8: if $n \in U$ then $\hat{\alpha} = P_{\theta}(y_{n-1})$ 9: $\alpha, \beta, \tau =$ updateNoiseSchedule($\hat{\alpha}, n$) 10: end if 11: 12: if $n \neq 1$ then 13: $y_{n-1} = y_{n-1} + \sigma_n z$ 14: end if 15: end for 16: return y_0

Denoising Diffusion Restoration Models (DDRM)*

An efficient, unsupervised posterior sampling method

Denoising Diffusion Probabilistic Models (Independent of inverse problem) Denoising Diffusion Restoration Models (Dependent on inverse problem)

Dual Diffusion Implicit Bridges for Image-to-Image Translation*

Figure 1: **Dual Diffusion Implicit Bridges**: DDIBs leverage two ODEs for image translation. Given a source image $\mathbf{x}_0^{(s)}$, the source ODE runs in the forward direction to convert it to the latent $\mathbf{x}_T^{(s)}$, while the target, reverse ODE then constructs the target image $\mathbf{x}_0^{(t)}$. (*Top*) Illustration of the DDIB idea between two one-dimensional distributions. (*Bottom*) DDIB from a tiger to a cat using a pre-trained conditional diffusion model.

*[2203.08382] Dual Diffusion Implicit Bridges for Image-to-Image Translation (arxiv.org)

Score-based Generative Modeling in Latent Space*

Latent Space

[†][2112.10752] High-Resolution Image Synthesis with Latent Diffusion Models (arxiv.org) *[2106.05931] Score-based Generative Modeling in Latent Space (arxiv.org)

Tackling the Generative Learning Trilemma with Denoising Diffusion GANS*

*[2112.07804] Tackling the Generative Learning Trilemma with Denoising Diffusion GANs (arxiv.org)

Thank You!

Useful Resources

- <u>What's the score? Review of latest Score Based Generative Modeling papers</u>
- <u>zhangbaijin/Diffusion-model-low-level (github.com)</u>
- What are Diffusion Models? | Lil'Log (lilianweng.github.io)
- <u>Generative Modeling by Estimating Gradients of the Data Distribution | Yang Song</u>
- Diffusion Models as a kind of VAE
- <u>yang-song/score_sde_pytorch</u>
- <u>Denoising Diffusion Probabilistic Models (DDPM) (labml.ai)</u>
- <u>Denoising Diffusion-based Generative Modeling: Foundations and Applications</u>