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Noise Conditional Score Network (NCSN)*

4*[1907.05600v3] Generative Modeling by Estimating Gradients of the Data Distribution (arxiv.org)

Motivation: Learning the score function                                       instead

Training Objective: Score Matching for Score Estimation

expensive

Sampling with Langevin Dynamics

score

https://arxiv.org/abs/1907.05600v3


Noise Conditional Score Network (NCSN)
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Cheaper Score Matching

1. Denoising Score Matching (DSM)

Matching perturbed data distribution

pre-specified noise distribution, i.e. Gaussian

2. Sliced Score Matching: random projections to approximate



Noise Conditional Score Network (NCSN)
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Low Density Regions Pitfalls: learning the score of              only

2. Slow mixing of Langevin dynamic

1. Inaccurate score estimation in low data density regions 

For regions with                  , we do not have sufficient 

data samples for accurate estimation.



Noise Conditional Score Network (NCSN)
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Denoising score matching objective for given 

Final objective

Training Objective: Score Matching a Sequence of Noise-levels 

coefficient function

Large noise: perturbate the data sufficiently to better estimate the low density regions 

Small noise: be able to converge to the true data distribution



Noise Conditional Score Network (NCSN)
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NCSN Inference: via Annealed Langevin Dynamics

A sequence of positive noise scales

Outer loop: responsible for transitioning to next noise levels 

Inner loop: takes T steps to guarantee the samples are from 
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Deep Unsupervised Learning using Nonequilibrium Thermodynamics*
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First Attempt from Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Main Ideas:
⚫ inspired by non-equilibrium statistical physics

⚫ systematically and slowly destroy structure in a data distribution (iterative forward diffusion)

⚫ then learn a reverse diffusion process that restores structure in data(restore data distribution)

Jascha Sohl-Dickstein is also author of RealNVP and Score-based generative model through SDE, 

now is working on ML theory and NLP

Math come soon in DDPM

*[1503.03585] Deep Unsupervised Learning using Nonequilibrium Thermodynamics (arxiv.org)

https://arxiv.org/abs/1503.03585


DDPM: Denoising Diffusion Probabilistic Models*

11*[2006.11239] Denoising Diffusion Probabilistic Models (arxiv.org)

https://arxiv.org/abs/2006.11239


DDPM: Denoising Diffusion Probabilistic Models
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True data dist. : 

Reverse process: 

Forward process:  
Markov Assumption



DDPM: Denoising Diffusion Probabilistic Models
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Forward Diffusion Process

or
norm invariant

For arbitrary t

Each Step

variance schedule      controls the diffusion processing



DDPM: Denoising Diffusion Probabilistic Models
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Reverse Diffusion Process if is small enough, will also be Gaussian

Reverse when condition on



DDPM: Denoising Diffusion Probabilistic Models
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Negative Log Likelihood to Variational Lower Bound



DDPM: Denoising Diffusion Probabilistic Models
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Parameterization for Training Loss

Model The Noise(Residual)

Known



DDPM: Denoising Diffusion Probabilistic Models
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Nonetheless, it is just another parameterization of

two options†

† Covariance has analytical optimal form (Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models)

https://arxiv.org/abs/2206.07309


DDPM: Denoising Diffusion Probabilistic Models
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DDIM: Denoising Diffusion Implicit Models*
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Model this directly

Variational Inference for Non-Markovian Forward Processes

Forward: still Gaussian (non-Markovian)

Reverse Process: deterministic given 

[2010.02502] Denoising Diffusion Implicit Models (arxiv.org)

https://arxiv.org/abs/2010.02502


DDIM: Denoising Diffusion Implicit Models
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Given: noisy observation 

Prediction of the corresponding

Variational Inference Objective (equivalent to objective in DDPM for certain weights)

Surrogate Objective

Model difference between       and  

Same as in DDPM!



DDIM: Denoising Diffusion Implicit Models
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Sampling from Generalized Generative Processes

• DDPM: (forward process becomes Markovian (different noise schedule from vanilla DDPM))

• DDIM: (forward process becomes deterministic)



DDIM: Denoising Diffusion Implicit Models
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Accelerated Generation Processes

Denoising surrogate objective does not depend 

on the specific forward procedure

Consider the forward process as defined on a subset

The generative process now samples latent variables according to reversed(  ), which we term (sampling) trajectory

→ Train a model with arbitrary number forward steps but only sample from some of them in the generative process



DDIM: Denoising Diffusion Implicit Models
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Relevance to Neural ODEs

Variance-Exploding SDE soon
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SDE-based Generative Models: A Unified Framework*

26*[2011.13456] Score-Based Generative Modeling through Stochastic Differential Equations (arxiv.org)

https://arxiv.org/abs/2011.13456


SDE-based Generative Models: A Unified Framework
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Model diffusion process as solution of Itô SDE (continuous time)  

Generating samples by reversing the SDE



SDE-based Generative Models: A Unified Framework
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Training Objective (DSM)
known Gaussian when             if affine

Discretizations

SDE Form Discrete Markov Chain SDE Expression

Variance Exploding (VE) SDE

(SMLD)

Variance Preserving (VP) SDE

(DDPM)



SDE-based Generative Models: A Unified Framework
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Reverse SDE Discretization 

1. Predictor: general-purpose numerical SDE solvers

2. Corrector: score-based MCMC (i.e. Langevin MCMC)

DDPM: predictor only

SMLD: corrector only

Predictor-Corrector (PC) Samplers

Ensure samples on the desired manifold



SDE-based Generative Models: A Unified Framework
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Relationship between Bayesian Posterior and Reverse SDE



SDE-based Generative Models: A Unified Framework

31

Sampling: DDPM and SDE point of views (equivalent up to first order)

The ancestral sampling of DDPM matches its reverse diffusion counterpart when             for all i

Reverse SDEBayesian Posterior



SDE-based Generative Models: A Unified Framework
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Model: DDPM and SDE point of views 

Score in score-based model is affine transformation of predicted noise in DDPM

Equivalent one step forward

Denoising score matching

Gaussian assumption



SDE-based Generative Models: A Unified Framework
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ODE form

Fokker-Plank function associated with forward diffusion

With and

Reverse

ODE

Comparing with SDEs, ODEs can be solved with larger step sizes as they have no randomness.



SDE-based Generative Models: A Unified Framework
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Controllable Generation

Bayesian time-dependent classifier
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SDEdit: Guided Image Synthesis and Editing with SDE*

36*[2108.01073] SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations (arxiv.org)

https://arxiv.org/abs/2108.01073


Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems 

through Stochastic Contraction*

37*[2112.05146] Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction

Same idea but different downstream tasks: super-resolution (SR), inpainting, and MRI reconstruction 

https://arxiv.org/abs/2112.05146


DifFace: Blind Face Restoration with Diffused Error Contraction*

38*[2212.06512] DifFace: Blind Face Restoration with Diffused Error Contraction (arxiv.org)

Same idea but different downstream task: Blind face (easier) restoration

two classical network architectures 

as the backbone SRCNN and SwinIR

https://arxiv.org/abs/2212.06512


Accelerating Diffusion Models via Early Stop of the Diffusion Process*

39*[2205.12524] Accelerating Diffusion Models via Early Stop of the Diffusion Process (arxiv.org)

Get not fully noising image by diffusing output from pre-trained models like GAN and VAE

https://arxiv.org/abs/2205.12524


Image Super-Resolution via Iterative Refinement*
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*[2104.07636] Image Super-Resolution via Iterative Refinement (arxiv.org)

†[2111.05826] Palette: Image-to-Image Diffusion Models (arxiv.org)

‡[2106.15282] Cascaded Diffusion Models for High Fidelity Image Generation (arxiv.org)

The condition is concatenated with yt along the channel dimension (cascaded)

Same author also proposed palette for multi-tasks†, same architecture used for cascaded diffusion‡

https://arxiv.org/abs/2104.07636
https://arxiv.org/abs/2111.05826
https://arxiv.org/abs/2106.15282


SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models*

41[2104.14951] SRDiff: Single Image Super-Resolution with Diffusion Probabilistic Models (arxiv.org)

Learn the residual with condition encoded LR (fused as 2D CNN block outputs )

https://arxiv.org/abs/2104.14951


ILVR: Conditioning Method for DDPM*

42*[2108.02938] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (arxiv.org)

https://arxiv.org/abs/2108.02938


RePaint: Inpainting using Denoising Diffusion Probabilistic Models*

43*[2201.09865] RePaint: Inpainting using Denoising Diffusion Probabilistic Models (arxiv.org)

Same idea but different downstream tasks from ILVR

https://arxiv.org/abs/2201.09865


Noise Estimation for Generative Diffusion Models*

44*[2104.02600] Noise Estimation for Generative Diffusion Models (arxiv.org)

https://arxiv.org/abs/2104.02600


Denoising Diffusion Restoration Models (DDRM)*

45*[2201.11793] Denoising Diffusion Restoration Models (arxiv.org)

An efficient, unsupervised posterior sampling method

https://arxiv.org/abs/2201.11793


Dual Diffusion Implicit Bridges for Image-to-Image Translation*

46*[2203.08382] Dual Diffusion Implicit Bridges for Image-to-Image Translation (arxiv.org)

https://arxiv.org/abs/2203.08382


Score-based Generative Modeling in Latent Space*

47

†[2112.10752] High-Resolution Image Synthesis with Latent Diffusion Models (arxiv.org)

*[2106.05931] Score-based Generative Modeling in Latent Space (arxiv.org)

Faster diffusion 

in latent space

*

†

https://arxiv.org/abs/2111.05826
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2106.05931


Tackling the Generative Learning Trilemma with Denoising Diffusion GANS*

48*[2112.07804] Tackling the Generative Learning Trilemma with Denoising Diffusion GANs (arxiv.org)

https://arxiv.org/abs/2112.07804


Thank    You!
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• What's the score? – Review of latest Score Based Generative Modeling papers

• zhangbaijin/Diffusion-model-low-level (github.com)

• What are Diffusion Models? | Lil'Log (lilianweng.github.io)

• Generative Modeling by Estimating Gradients of the Data Distribution | Yang Song

• Diffusion Models as a kind of VAE

• yang-song/score_sde_pytorch

• Denoising Diffusion Probabilistic Models (DDPM) (labml.ai)

• Denoising Diffusion-based Generative Modeling: Foundations and Applications

https://scorebasedgenerativemodeling.github.io/
https://github.com/zhangbaijin/Diffusion-model-low-level#image-to-image-translation
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://yang-song.net/blog/2021/score/
https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
https://github.com/yang-song/score_sde_pytorch
https://nn.labml.ai/diffusion/ddpm/index.html
https://cvpr2022-tutorial-diffusion-models.github.io/
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