Yuanzhi Zhu

18/Jun/2023

- <u>Motivation</u>
- Geometric Perspective
- <u>Conclusion</u>

(my) Motivation: Not related to non-Euclidean geometry

1. How to understand this graph?

(my) Motivation: Not related to MOLECULAR generation

2. What's the difference between the following two algorithm?

Algorithm 1 DiffPIR

- **Require:** $\mathbf{s}_{\theta}, T, \mathbf{y}, \sigma_n, \{\bar{\sigma}_t\}_{t=1}^T, \zeta, \lambda$ 1: Initialize $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, pre-calculate $\rho_t \triangleq \lambda \sigma_n^2 / \bar{\sigma}_t^2$.
- 2: for t = T to 1 do
- $\mathbf{x}_0^{(t)} = \frac{1}{\sqrt{\bar{lpha}_t}} (\mathbf{x}_t + (1 \bar{lpha}_t) \mathbf{s}_{\theta}(\mathbf{x}_t, t))$ // Predict $\hat{\mathbf{z}}_0$ with 3: score model as denoisor
- $\hat{\mathbf{x}}_{0}^{(t)} = \arg\min_{\mathbf{x}} \|\mathbf{y} \mathcal{H}(\mathbf{x})\|^{2} + \rho_{t} \|\mathbf{x} \mathbf{x}_{0}^{(t)}\|^{2} // Solving$ 4: data proximal subproblem
- $\hat{\epsilon} = \frac{1}{\sqrt{1-\bar{\alpha}_t}} (\mathbf{x}_t \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{(t)}) // Calculate \ effective \ \hat{\epsilon}(\mathbf{x}_t, \mathbf{y})$ 5: $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 6:
- $\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{\hat{x}}_0^{(t)} + \sqrt{1 \bar{\alpha}_{t-1}} (\sqrt{1 \zeta} \hat{\epsilon} + \sqrt{\zeta} \epsilon_t) //$ 7: Finish one step reverse diffusion sampling
- 8: end for
- 9: return \mathbf{x}_0

Algorithm 2 Extended Sampling I: DPS y_t

Require: $\mathbf{s}_{\theta}, T, \mathbf{y}, \sigma_n, \{\sigma_t\}_{t=1}^T, \lambda$ 1: Initialize $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for t = T to 1 do 3: $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{z}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\overline{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sqrt{\beta_t} \epsilon_t // \text{ one step}$ 4: reverse diffusion sampling 5: $\mathbf{x}_{t-1} = \mathbf{z}_{t-1} - \frac{\sigma_t^2}{2\lambda\sigma_t^2} \nabla_{\mathbf{z}_{t-1}} \|\mathbf{y}_{t-1} - \mathcal{H}(\mathbf{z}_{t-1})\|^2 // Solving$ data proximal subproblem 6: end for 7: return \mathbf{x}_0

(my) Motivation: Use only VE-ODE for example

3. How to understand the diffusion trajectory better?

(my) Motivation: Understanding through experiment observation

4. Where does the generative power come from?

$$x_0 \sim q(x_0) \longrightarrow q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - eta_t} x_{t-1}, eta_t I) \longrightarrow q(x_{1:T} | x_0) = \prod_{t=1}^{T} q(x_t | x_{t-1})$$

T

- <u>Motivation</u>
- <u>Geometric Perspective</u>
- <u>Conclusion</u>

Visualization of High Dimensional Trajectory

Proposition 1. Given a high-dimensional vector $\mathbf{x} \in \mathbb{R}^d$ and an isotropic Gaussian noise $\mathbf{z} \sim \mathbf{z}$ $\mathcal{N}(\mathbf{0}; \sigma^2 \mathbf{I}_d), \sigma > 0$, we have $\mathbb{E} \|\mathbf{z}\|^2 = \sigma^2 d$, and with high probability, \mathbf{z} stays within a "thin shell": $\|\mathbf{z}\| = \sigma \sqrt{d} \pm O(1). Additionally, \mathbb{E}\left[\|\mathbf{x} + \mathbf{z}\|^2 - \|\mathbf{x}\|^2\right] = \sigma^2 d, \lim_{d \to \infty} \mathbb{P}\left(\|\mathbf{x} + \mathbf{z}\| > \|\mathbf{x}\|\right) = 1.$ Perpendicular \mathbf{x} $\mathcal{N}(a_{\infty}x_0, b_{\infty}^2)$ \mathcal{M}_{∞} Mi $\sigma \sqrt{n}$ [2206.00941v2] Improving Diffusion Models for Inverse

Problems using Manifold Constraints (arxiv.org)

Visualization of High Dimensional Trajectory

Visualization of High Dimensional Trajectory

- 1. Straightness of the trajectories
- 2. Properties of denoising trajectory

Notations:

sampling trajectory sequence $\{\hat{\mathbf{x}}_s\}_{s_N}^{s_0}$ (reverse diffusion with trained model)optimal sampling sequence $\{\hat{\mathbf{x}}_s^{\star}\}_{s_N}^{s_0}$ (trajectory of image from dataset) ℓ_2 distance $d(\cdot, \cdot)$ $d(\cdot, \cdot)$ trajectory deviation $d(\hat{\mathbf{x}}_s, [\hat{\mathbf{x}}_{s_0}, \hat{\mathbf{x}}_{s_N}])$ (straightness)denoising trajectory sequence $\{r_{\theta}(\hat{\mathbf{x}}_s, s)\}_{s_N}^{s_1}$ (straightness)

optimal denoiser

$$r_{\boldsymbol{\theta}}^{\star}(\hat{\mathbf{x}};\sigma_t) = \sum_i u_i \mathbf{x}_i = \sum_i \frac{\exp\left(-\|\hat{\mathbf{x}} - \mathbf{x}_i\|^2 / 2\sigma_t^2\right)}{\sum_j \exp\left(-\|\hat{\mathbf{x}} - \mathbf{x}_j\|^2 / 2\sigma_t^2\right)} \mathbf{x}_i, \quad \sum_i u_i = 1.$$

 $(\cdot)^{\star}$ optimal/theoretical variable

Observation 1. The sampling trajectory is almost straight while the denoising trajectory is bent.

Observation 2. The generated samples on the sampling trajectory and denoising trajectory both move monotonically from the initial points toward their converged points in expectation, i.e., $\{\mathbb{E}[d(\hat{\mathbf{x}}_s, \hat{\mathbf{x}}_{s_0})]\}_{s_N}^{s_0}$ and $\{\mathbb{E}[d(r_{\theta}(\hat{\mathbf{x}}_s), r_{\theta}(\hat{\mathbf{x}}_{s_1}))]\}_{s_N}^{s_1}$ are monotone decreasing sequences.

Observation 3. The sampling trajectory converges to the data distribution in a monotone magnitude shrinking way. Conversely, the denoising trajectory converges to the data distribution in a monotone magnitude expanding way. Formally, we have $\{\mathbb{E} \| \hat{\mathbf{x}}_s \| \}_{s_N}^{s_0} \downarrow$ and $\{\mathbb{E} \| r_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_s) \| \}_{s_N}^{s_1} \uparrow$

Observation 4. The learned score is wellmatched to the optimal score in the largenoise region (from 80 to around 10), otherwise they may diverge or almost coincide depending on different regions

Figure 4: The score deviation in expectation (left and middle) and FID with different NFEs (right).

Observation 5. The (optimal) denoising trajectory converges faster than the (optimal) sampling trajectory in terms of visual quality.

Figure 5: The synthesized images of our proposed ODE-Jump sampling (bottom) converge much faster than that of EDMs [KAAL22] (top) in terms of visual quality.

"In fact, our learned score has to moderately diverge from the optimum to guarantee the generative ability."

Spontaneous Symmetry Breaking in Generative Diffusion Models*

*[2305.19693] Spontaneous symmetry breaking in generative diffusion models (arxiv.org)
Gabriel Raya | Spontaneous symmetry breaking in generative diffusion models

GDDIM: Generalized Denoising Diffusion Implicit Models*

Figure 2: Manifold hypothesis and Dirac distribution assumption. We model an image dataset as a mixture of well-separated Dirac distribution and visualize the diffusion process on the left. Curves in **red** indicate high density area spanned by $p_{0t}(\boldsymbol{u}(t)|\boldsymbol{u}(0))$ by different mode and region surrounded by them indicates the phase when $p_t(\boldsymbol{u})$ is dominated by one mode while region surrounded by **blue** one is for the mixing phase, and **green** region indicates fully mixed phase. On the right, sampling trajectories depict smoothness of ϵ_{GT} along ODE solutions, which justifies approximations used in DDIM and partially explains its empirical acceleration.

*[2206.05564] gDDIM: Generalized denoising diffusion implicit models (arxiv.org)

In-Distribution Latent Interpolation

Proposition 5. In high dimensions, linear interpolation [HJA20] shifts the latent distribution while spherical linear interpolation [SME21] asymptotically $(d \to \infty)$ maintains the latent distribution.

(a) The comparison of FID.

(b) Visualization of latent interpolation with different strategies.

Figure 6: Linear latent interpolation results in blurry images, while a simple re-scaling trick greatly preserves the fine-grained image details and enables a smooth traversal among different modes.

Rethinking Distillation-Based Fast Sampling Techniques

Figure 7: The comparison of distillation-based techniques. The *offline* techniques first simulate a long ODE trajectory with the teacher score and then make the student score points to the final point (KD [LL21]) or also include intermediate points on the trajectory (DFNO [ZNV⁺22]). The *online* techniques iteratively fine-tune the student prediction to align with the target simulated by a few-step teacher model along the sampling trajectory (PD [SH22]) or the denoising trajectory (CD [SDCS23]).

- <u>Motivation</u>
- Geometric Perspective
- <u>Conclusion</u>

Conclusion

• $\sqrt{\text{Geometric perspective on (VE) diffusion models}}$

• **×** Theoretical results do not entirely substantiate the observations