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A Geometric Perspective on Diffusion Models*

(my) Motivation: Not related to non-Euclidean geometry

*[2305.19947] A Geometric Perspective on Diffusion Models (arxiv.org)

1. How to understand this graph?
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https://arxiv.org/abs/2305.19947


(my) Motivation: Not related to MOLECULAR generation

2. What’s the difference between the following two algorithm?

A Geometric Perspective on Diffusion Models
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(my) Motivation: Use only VE-ODE for example

3. How to understand the diffusion trajectory better?

A Geometric Perspective on Diffusion Models
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(my) Motivation: Understanding through experiment observation

4. Where does the generative power come from?

A Geometric Perspective on Diffusion Models
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Visualization of High Dimensional Trajectory

Perpendicular

8
[2206.00941v2] Improving Diffusion Models for Inverse 

Problems using Manifold Constraints (arxiv.org)

https://arxiv.org/abs/2206.00941v2
https://arxiv.org/abs/2206.00941v2


(Low Rank)
(High Rank)

Visualization of High Dimensional Trajectory
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Visualization of High Dimensional Trajectory
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1. Straightness of the trajectories

2. Properties of denoising trajectory

(Low Rank)
(High Rank)

(Implicit)
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Experiments on High Dimensional Trajectory

Notations:
sampling trajectory sequence 

distance

trajectory deviation

denoising trajectory sequence 

optimal sampling sequence

optimal denoiser

(trajectory of image from dataset)

(reverse diffusion with trained model)

(straightness)

optimal/theoretical variable
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Experiments on High Dimensional Trajectory

trajectory deviation ℓ2 distance 

curvature of sampling trajectory

curvature of denoising trajectory
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Experiments on High Dimensional Trajectory

optimal denoiser:

1D example with two source data point (-1) and (+1) (from EDM)

https://arxiv.org/abs/2206.00364
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Experiments on High Dimensional Trajectory
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Experiments on High Dimensional Trajectory

Observation 4. The learned score is well-

matched to the optimal score in the large-

noise region (from 80 to around 10), 

otherwise they may diverge or almost 

coincide depending on different regions

Observation 5. The (optimal) denoising 

trajectory converges faster than the 

(optimal) sampling trajectory in terms of 

visual quality.

“In fact, our learned score has to moderately diverge from the optimum to guarantee the generative ability.”



Spontaneous Symmetry Breaking in Generative Diffusion Models*

*[2305.19693] Spontaneous symmetry breaking in generative diffusion models (arxiv.org)

Gabriel Raya | Spontaneous symmetry breaking in generative diffusion models 16

θT −t is a monotonic function of t ranging from 0 to 1

https://arxiv.org/abs/2305.19693
https://gabrielraya.com/blog/2023/symmetry-breaking-diffusion-models/


GDDIM: Generalized Denoising Diffusion Implicit Models*

*[2206.05564] gDDIM: Generalized denoising diffusion implicit models (arxiv.org) 17

https://arxiv.org/abs/2206.05564
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In-Distribution Latent Interpolation
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Rethinking Distillation-Based Fast Sampling Techniques
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Conclusion

• √ Geometric perspective on (VE) diffusion models

• × Theoretical results do not entirely substantiate the observations
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