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DDPM: Denoising Diffusion Probabilistic Models*
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True data dist. : 

Reverse process: 

Forward process:  
Markov assumption

*[2006.11239] Denoising Diffusion Probabilistic Models (arxiv.org)

https://arxiv.org/abs/2006.11239


DDPM: Denoising Diffusion Probabilistic Models
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Forward Diffusion Process

or
norm invariant

For arbitrary t

Each Step

noise schedule      controls the diffusion process



DDPM: Denoising Diffusion Probabilistic Models
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Reverse Diffusion Process if is small enough, will also be Gaussian

Reverse when condition on
all three are forward processes

model      with NN ☺

match



DDPM: Denoising Diffusion Probabilistic Models
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Negative Log Likelihood to Variational Lower Bound
Known

Model The Noise (Residual)
Denoiser

† Covariance has analytical optimal form (Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models)

Explicit parameterization

two options†

https://arxiv.org/abs/2206.07309


DDPM: Denoising Diffusion Probabilistic Models
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DDPM: Denoising Diffusion Probabilistic Models
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DDIM: Denoising Diffusion Implicit Models*

9[2010.02502] Denoising Diffusion Implicit Models (arxiv.org)

Sampling:

Accelerated Generation Processes

Reverse Process: deterministic given           , with

https://arxiv.org/abs/2010.02502
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Plug-and-Play Image Restoration 
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Measurement (degradation model):

Reconstruction (Bayes' theorem):

Maximum A Posteriori (MAP) estimation:



Plug-and-Play Image Restoration 
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Half Quadratic Splitting (HQS) algorithm:

Introduce auxiliary variable z:

Lagrange multiplier:

Substitute degradation model :

data term prior term

Data 

Prior 



Plug-and-Play Image Restoration 
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Inpainting

Deblurring

SR

degradation models

Approximately

by definition



Plug-and-Play Image Restoration 
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Previous Iterative Approaches:

• Empirically chosen schedules

• Discriminative denoisers 

cszn/USRNet: Deep Unfolding Network for Image Super-Resolution (CVPR, 2020) (PyTorch) (github.com)Image from:

Introduce Diffusion Models:

• Well-defined sampling schedules/trajectories ☺

• Generative prior ☺

Sampling as Optimization

But where does the generative power come from?

https://github.com/cszn/USRNet


Denoising Diffusion Models for Plug-and-Play Image Restoration
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Calculate the predicted conditional noise 

Finish one sampling step by adding noise back

In this page we use      instead      to avoid confusion

One iteration HQS → estimate



Denoising Diffusion Models for Plug-and-Play Image Restoration
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unconditional

HQS algorithm

Approximately

DiffPIR



Denoising Diffusion Models for Plug-and-Play Image Restoration
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HQS algorithm

DiffPIR

for denoising problem is not a “noisy image”

fix

But where does the generative power come from?



Denoising Diffusion Models for Plug-and-Play Image Restoration
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…

DDIM

Ours

…
denoiser



Denoising Diffusion Models for Plug-and-Play Image Restoration
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t=1000 t=600 t=300 t=100

Can skip this part!

…

…

…



Ablation Study: Sampling Steps & Start Timestep
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Effect of sampling steps Effect of start sampling timestep



Ablation Study: Effect of Hyperparameters 
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ζ

λ

0.0

0.2

0.5

0.8

1.0

0.1 1.0 10 100 1000 10000

• λ<1       → the noise is amplified

• λ>1000 → more unconditional

• ζ ~ 1      → more blurry
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Quantitative Results
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Quantitative Results
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Qualitative Results: Noisy 4x SR
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Qualitative Results: Noisy Motion Deblurring

*All methods used the same diffusion model as denoiser



Diverse Reconstruction: Inpainting
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Diverse Reconstruction: Super Resolution
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Thank    You!



Additional Slides on Diffusion Models for IR

Sampling from the Posterior



SDE-based Generative Models: A Unified Framework*

31*[2011.13456] Score-Based Generative Modeling through Stochastic Differential Equations (arxiv.org)

https://arxiv.org/abs/2011.13456


SDE-based Generative Models: A Unified Framework
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Training Objective (DSM)
known Gaussian when             if affine

Discretizations

SDE Form Discrete Markov Chain SDE Expression

Variance Exploding (VE) SDE

(NCSN)

Variance Preserving (VP) SDE

(DDPM)



SDE-based Generative Models: A Unified Framework
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Model: DDPM and SDE point of views 

Score in score-based model is affine transformation of predicted noise in DDPM

Equivalent one step forward

Denoising score matching

Gaussian assumption



SDE-based Generative Models: A Unified Framework
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Controllable Generation

Bayesian
time-dependent classifier 

(guidance term)

unconditional model



ILVR: Conditioning Method for DDPM*

35*[2108.02938] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (arxiv.org)

https://arxiv.org/abs/2108.02938


RePaint: Inpainting using Denoising Diffusion Probabilistic Models*

36*[2201.09865] RePaint: Inpainting using Denoising Diffusion Probabilistic Models (arxiv.org)

Same idea but different downstream tasks from ILVR

unconditional

https://arxiv.org/abs/2201.09865


Diffusion Posterior Sampling for General Noisy Inverse Problems*

37*[2209.14687] Diffusion Posterior Sampling for General Noisy Inverse Problems (arxiv.org)

General forward model

https://arxiv.org/abs/2209.14687


38

HQS as one diffusion step

Denoising Diffusion Models for Plug-and-Play Image Restoration



Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems*

39*[2211.12343] Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems (arxiv.org)

A itself is row-orthogonal

efficient computation via SVD

https://arxiv.org/abs/2211.12343


Denoising Diffusion Restoration Models (DDRM)*

40*[2201.11793] Denoising Diffusion Restoration Models (arxiv.org)

An efficient, unsupervised 

posterior sampling method

SVD

https://arxiv.org/abs/2201.11793


Denoising Diffusion Restoration Models (DDRM)*

41*[2201.11793] Denoising Diffusion Restoration Models (arxiv.org)

Linear inverse problem

SVD

DDRM

forward

reverse

singular values

These equations in DDRM are in VESDE form

y null-space

final steps

generative part

https://arxiv.org/abs/2201.11793


Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model*

42*[2212.00490] Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model (arxiv.org)

range-space of A null-space of A

find a proper ҧ𝑥 that makes the null-space term 

is in harmony with the range-space term

Decouple

Reconstruction

Diffusion Models

https://arxiv.org/abs/2212.00490


Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model

43



ΠGDM: Pseudoinverse-Guided Diffusion Models for Inverse Problems*

44*Pseudoinverse-Guided Diffusion Models for Inverse Problems | OpenReview

https://openreview.net/forum?id=9_gsMA8MRKQ


On Equivalence of Diffusion Posterior Sampling Strategies 
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DPS

some coefficient

DDNM



Solving Image Restoration Tasks Iteratively (Traditional PnP Methods)  
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Image Restoration by Iterative Denoising and Backward Projections Plug-and-Play Image Restoration with Deep Denoiser Prior

What are the advantages of diffusion sampling framework? → well-defined path connecting two distributions

In our experiment all methods use the same diffusion model checkpoints → schedule is all you need!!

https://ieeexplore.ieee.org/abstract/document/8489894
https://arxiv.org/abs/2008.13751


Sampling from Langevin Dynamics?

47

[2103.04715] Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie (arxiv.org)

[1611.02862] The Little Engine that Could: Regularization by Denoising (RED) (arxiv.org)

An Interpretation Of Regularization By Denoising And Its Application With The Back-Projected Fidelity Term

https://arxiv.org/abs/2103.04715
https://arxiv.org/abs/1611.02862
https://ieeexplore.ieee.org/abstract/document/9506499


PnP Generative Networks: Conditional Iterative Generation of Images in Latent Space*

48*[1612.00005] Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space (arxiv.org)

Metropolis-adjusted Langevin algorithm (MALA) sampler

Denoising AutoEncoder output as score

https://arxiv.org/abs/1612.00005
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