Yuanzhi Zhu

Supervisors: Dr. Kai Zhang, Jingyun Liang, Jiezhang Cao Principal Investigator: Prof. Luc Van Gool

8/June/2023

- <u>Preliminaries</u>
- <u>Methods</u>
- <u>Results</u>

Forward Diffusion Process

$$q(x_{1:T}|x_0) := \prod_{t=1}^T q(x_t|x_{t-1})$$

Each Step

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \underbrace{\sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}}_{\text{norm invariant}}) \quad \text{or} \quad x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$$

noise schedule β_t controls the diffusion process

For arbitrary *t*

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)\mathbf{I}) \qquad \alpha_t = 1 - \beta_t \text{ and } \bar{\alpha}_t = \prod_{i=1}^{t} \alpha_i$$

$$x_t = \sqrt{\bar{\alpha}_t} \boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_t} \cdot z_t$$

T

Negative Log Likelihood to Variational Lower Bound

$$-\log p_{\theta}(\mathbf{x}_{0}) \implies \mathbb{E}_{q}\left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})}\right] \implies \sum_{t=2}^{T} \underbrace{D_{\mathrm{KL}}\left[q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\right]}_{L_{t}} \|p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})\right]$$

Explicit parameterization

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_t, t), \boldsymbol{\Sigma}_{\theta}(x_t, t)) \quad \begin{cases} \boldsymbol{\mu}_{\theta}(x_t, t) &= \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} z_{\theta}(x_t, t)) \\ \boldsymbol{\Sigma}_{\theta}(x_t, t) &= \sigma_t^2 \mathbf{I} \end{cases} \text{ two options}^{\dagger} \sigma^2 = \begin{cases} \beta_t \\ \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t \end{cases}$$

Model The Noise (Residual)

$$L_t^{\text{simple}} = \mathbb{E}_{x_0, z_t} \left[\| z_t - z_\theta (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} z_t, t) \|^2 \right] \qquad \hat{\mathbf{x}}_0^{(t)}(\mathbf{x}_t) = \frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \mathbf{z}_\theta^{(t)}(\mathbf{x}_t, t)}{\sqrt{\bar{\alpha}_t}}$$

[†] Covariance has analytical optimal form (Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models)

- Known

$$x_0 \sim q(x_0) ~~~ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-eta_t} x_{t-1}, eta_t I) ~~ ext{ or } q(x_{1:T}|x_0) = \prod_{t=1}^r q(x_t|x_{t-1})$$

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{z}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
$ abla_{ heta} \left\ oldsymbol{\epsilon} - \mathbf{z}_{oldsymbol{ heta}}(\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}oldsymbol{\epsilon},t) ight\ ^2$	5: end for
6: until converged	6: return \mathbf{x}_0

T

$$x_{0} \sim q(x_{0}) \longrightarrow q(x_{t}|x_{t-1}) = \mathcal{N}(x_{t}; \sqrt{1-\beta_{t}}x_{t-1}, \beta_{t}I) \longrightarrow q(x_{1:T}|x_{0}) = \prod_{t=1}^{T} q(x_{t}|x_{t-1})$$

$$x_{0} \longrightarrow x_{t} = \int p(x_{T}) \prod_{t=1}^{T} p_{t}(x_{t}) + \int p_{t}($$

DDIM: Denoising Diffusion Implicit Models*

Reverse Process: deterministic given x_t, x_0 , with $\sigma_t = 0$

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} x_0 + \frac{\sqrt{1 - \bar{\alpha}_{t-1}}}{\sqrt{1 - \bar{\alpha}_t}} (x_t - \sqrt{\bar{\alpha}_t} x_0)$$

Sampling:

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \underbrace{\left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} z_{\theta}^{(t)}(x_t)}{\sqrt{\bar{\alpha}_t}}\right)}_{\text{"predicted } x_0\text{"}} + \underbrace{\sqrt{1 - \bar{\alpha}_{t-1}} \cdot z_{\theta}^{(t)}(x_t)}_{\text{"direction pointing to } x_t\text{"}}$$

Accelerated Generation Processes

- <u>Preliminaries</u>
- <u>Methods</u>
- <u>Results</u>

Substitute degradation model $\mathbf{y} = \mathcal{H}\mathbf{x} + \mathbf{n}$: $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2\sigma_n^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{x})$ prior term data term $\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \quad \frac{1}{2\sigma^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$ Introduce auxiliary variable **Z**: $\mathcal{L}_{\mu}(\mathbf{x}, \mathbf{z}) = \frac{1}{2\sigma^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{z}) + \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}\|^2$ Lagrange multiplier: $\begin{cases} \mathbf{z}_{k} = \arg\min_{\mathbf{z}} \underbrace{\frac{1}{2(\sqrt{\lambda/\mu})^{2}} \|\mathbf{z} - \mathbf{x}_{k}\|^{2}}_{\text{consistence}} \underbrace{\mathcal{P}(\mathbf{z})}_{\text{prior}} \\ \mathbf{x}_{k-1} = \arg\min_{\mathbf{x}} \underbrace{\|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^{2}}_{\text{condition}} + \underbrace{\mu\sigma_{n}^{2} \|\mathbf{x} - \mathbf{z}_{k}\|^{2}}_{\text{consistence}} \end{cases}$ **Prior** Half Quadratic Splitting (**HQS**) algorithm: Data

$$\arg \min_{\mathbf{z}} \underbrace{\frac{1}{2(\sqrt{\lambda/\mu})^2} \|\mathbf{z} - \mathbf{x}_k\|^2}_{\text{consistence}} + \underbrace{\mathcal{P}(\mathbf{z})}_{\text{prior}} \qquad \underbrace{\mathbf{by definition}}_{\mathbf{x}_k = \mathbf{z}_k + \sqrt{\lambda/\mu\epsilon}} \mathbf{z}_k = Denoiser(\mathbf{x}_k, \sqrt{\lambda/\mu})$$

$$\operatorname{degradation models}$$

$$\operatorname{arg min}_{\mathbf{x}} \underbrace{\|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2}_{\text{condition}} + \underbrace{\mu\sigma_n^2 \|\mathbf{x} - \mathbf{z}_k\|^2}_{\text{consistence}} \left\{ \begin{array}{c} \text{Inpainting } \mathbf{x}_{k-1} = \frac{\mathbf{M} \odot \mathbf{y} + \rho_k \mathbf{z}_k}{\mathbf{M} + \rho_k} & \mathbf{y} = \mathbf{M} \odot \mathbf{x} \\ \\ \text{Deblurring } \mathbf{x}_{k-1} = \mathcal{F}^{-1} \left(\frac{\overline{\mathcal{F}(\mathbf{k})} \mathcal{F}(\mathbf{y}) + \rho_k \mathcal{F}(\mathbf{z}_k)}{\overline{\mathcal{F}(\mathbf{k})} \mathcal{F}(\mathbf{k}) + \rho_k} \right) & \mathbf{y} = \mathbf{x} \otimes \mathbf{k} + \mathbf{n} \\ \\ \mathbf{SR} \quad \mathbf{x}_{k-1} = \mathcal{F}^{-1} \left(\frac{1}{\rho_k} \left(\mathbf{d} - \overline{\mathcal{F}(\mathbf{k})} \odot_s \frac{(\mathcal{F}(\mathbf{k})\mathbf{d}) \Downarrow_s}{(\overline{\mathcal{F}(\mathbf{k})} \mathcal{F}(\mathbf{k})) \Downarrow_s + \rho_k} \right) \right) & \mathbf{y} = \mathbf{x} \downarrow_{sf}^{bicubic} + \mathbf{n} \\ \mathbf{d} = \overline{\mathcal{F}(\mathbf{k})} \mathcal{F}(\mathbf{y} \uparrow_{sf}) + \rho_k \mathcal{F}(\mathbf{z}_k) \\ \end{aligned}$$

Previous Iterative Approaches:

- Empirically chosen *schedules* 😕
- Discriminative denoisers 😕

Introduce Diffusion Models:

- Well-defined sampling schedules/trajectories 😳
- *Generative* prior 🙂

Sampling as Optimization

$$dx_t = -\nabla V(x_t)dt + \sqrt{2}dB_t$$

But where does the generative power come from?

Image from: cszn/USRNet: Deep Unfolding Network for Image Super-Resolution (CVPR, 2020) (PyTorch) (github.com)

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \underbrace{\left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t}\epsilon_{\theta}^{(t)}(x_t)}{\sqrt{\bar{\alpha}_t}}\right)}_{\text{"predicted } x_0\text{"}} + \underbrace{\sqrt{1 - \bar{\alpha}_{t-1}} \cdot \epsilon_{\theta}^{(t)}(x_t)}_{\text{"direction pointing to } x_t\text{"}}$$
One iteration **HQS** \rightarrow estimate $\hat{\mathbf{x}}_0^{(t)}(\mathbf{x}_t, \mathbf{y})$

$$\begin{cases} \mathbf{x}_0^{(t)} = \arg\min_{\mathbf{z}} \frac{1}{2\bar{\sigma}_t^2} \|\mathbf{z} - \mathbf{x}_t\|^2 + \mathcal{P}(\mathbf{z}) \\ \hat{\mathbf{x}}_0^{(t)} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \rho_t \|\mathbf{x} - \mathbf{x}_0^{(t)}\|^2 \end{cases}$$
Calculate the predicted conditional noise
$$\hat{\epsilon}(\mathbf{x}_t, \mathbf{y}) = \frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{(t)}(\mathbf{x}_t, \mathbf{y}))$$

Finish one sampling step by adding noise back

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{\hat{x}}_0^{(t)}(\mathbf{x}_t, \mathbf{y}) + \sqrt{1 - \bar{\alpha}_{t-1}} (\sqrt{1 - \zeta} \mathbf{\hat{\epsilon}}(\mathbf{x}_t, \mathbf{y}) + \sqrt{\zeta} \epsilon_t)$$

$$\hat{\mathbf{x}}_{0}(\mathbf{x}_{t}, \mathbf{y}) = \frac{1}{\sqrt{\bar{\alpha}_{t}}} (\mathbf{x}_{t} + (1 - \bar{\alpha}_{t})\mathbf{s}_{\theta}(\mathbf{x}_{t}, y)) = \frac{1}{\sqrt{\bar{\alpha}_{t}}} (\mathbf{x}_{t} + (1 - \bar{\alpha}_{t})(\mathbf{s}_{\theta}(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}}\log p_{t}(\mathbf{y}|\mathbf{x}_{t})) = \hat{\mathbf{x}}_{0}(\mathbf{x}_{t}) + \frac{1 - \bar{\alpha}_{t}}{\sqrt{\bar{\alpha}_{t}}} \nabla_{\mathbf{x}_{t}}\log p_{t}(\mathbf{y}|\mathbf{x}_{t}).$$

In this page we use ϵ_{θ} instead z_{θ} to avoid confusion

Approximately $\hat{\mathbf{x}}_{0}^{(t)} \approx \mathbf{x}_{0}^{(t)} - \frac{\bar{\sigma}_{t}^{2}}{2\lambda\sigma_{n}^{2}} \nabla_{\mathbf{x}_{0}^{(t)}} \|\mathbf{y} - \mathcal{H}(\mathbf{x}_{0}^{(t)})\|^{2}$

But where does the generative power come from?

Can skip this part!

Ablation Study: Sampling Steps & Start Timestep

Effect of sampling steps

Effect of start sampling timestep

Ablation Study: Effect of Hyperparameters

- $\lambda < 1$ \rightarrow the noise is amplified
- $\lambda > 1000 \rightarrow$ more *unconditional*
- $\zeta \sim 1$ \rightarrow more blurry

- <u>Preliminaries</u>
- <u>Methods</u>
- <u>Results</u>

Quantitative Results

FFHQ		Deblur (Gaussian)			Deblur (motion)			SR (×4)			
Method	NFEs \downarrow	$\mathbf{PSNR}\uparrow$	$FID\downarrow$	LPIPS \downarrow	PSNR ↑	$FID\downarrow$	LPIPS \downarrow	PSNR ↑	$FID\downarrow$	LPIPS \downarrow	
DiffPIR	100	27.36	59.65	0.236	26.57	65.78	0.255	26.64	65.77	0.260	
DPS [8]	1000	25.46	65.57	0.247	23.31	73.31	0.289	25.77	67.01	0.256	
DDRM [29]	20	25.93	101.89	0.298	-	-	-	27.92	89.43	0.265	
DPIR [52]	>20	27.79	123.99	0.450	26.41	146.44	0.467	28.03	133.39	0.456	
ImageNet		Deblur (Gaussian)			Deblur (motion)			SR (×4)			
Method	NFEs \downarrow	$\mathbf{PSNR}\uparrow$	$FID\downarrow$	LPIPS \downarrow	PSNR ↑	$FID\downarrow$	LPIPS \downarrow	PSNR ↑	$FID\downarrow$	LPIPS \downarrow	
DiffPIR	100	22.80	93.36	0.355	24.01	124.63	0.366	23.18	106.32	0.371	
DPS [8]	1000	19.58	138.80	0.434	17.75	184.45	0.491	22.16	114.93	0.383	
DDRM [29]	20	22.33	160.73	0.427	-	-	-	23.89	118.55	0.358	
DPIR [52]	>20	23.86	180.02	0.476	23.60	210 31	0 / 80	23.00	204 83	0.475	

Table 1. Noisy quantitative results on FFHQ (top) and ImageNet (bottom). We compute the average PSNR (dB), FID and LPIPS of different methods on Gaussian deblurring, motion deblurring and $4 \times$ SR.

Quantitative Results

FFHQ		Inpai	nt (box)	Inpa	int (rand	lom)	Debl	ur (Gaus	ssian)	Deb	lur (mot	ion)		SR (×4)	
Method	NFEs \downarrow	$FID\downarrow$	LPIPS \downarrow	PSNR ↑	$\mathrm{FID}\downarrow$	LPIPS \downarrow	PSNR ↑	$\mathrm{FID}\downarrow$	LPIPS \downarrow	PSNR ↑	$\mathrm{FID}\downarrow$	LPIPS \downarrow	PSNR ↑	$\mathrm{FID}\downarrow$	LPIPS \downarrow
DiffPIR DiffPIR	20 100	35.72 25.64	0.117 0.107	34.03 36.17	30.81 13.68	0.116 0.066	30.74 31.00	46.64 39.27	0.170 0.152	37.03 37.53	20.11 11.54	0.084 0.064	29.17 29.52	58.02 47.80	0.187 0.174
DPS [8]	1000	43.49	0.145	34.65	33.14	0.105	27.31	51.23	0.192	26.73	58.63	0.222	27.64	59.06	0.209
DDRM [29] DPIR [52]	20 > 20	37.05	0.119	31.83	56.60 -	0.164	28.40 30.52	67.99 96.16	0.238 0.350	38.39	27.55	0.233	30.09 30.41	68.59 96.16	0.188 0.362

Table 2. Noiseless quantitative results on FFHQ. We compute the average PSNR (dB), FID and LPIPS of different methods on inpainting, deblurring, and SR.

Qualitative Results: Noisy 4x SR

Qualitative Results: Noisy Motion Deblurring

*All methods used the same diffusion model as denoiser

Diverse Reconstruction: Inpainting

Diverse Reconstruction: Super Resolution

28

Thank You!

Additional Slides on Diffusion Models for IR

Sampling from the Posterior

SDE-based Generative Models: A Unified Framework*

SDE-based Generative Models: A Unified Framework

Training Objective (DSM) $\theta^* = \arg \min \mathbb{E}_{t \sim U(0,T)} \left\{ \lambda(t) \mathbb{E}_{x(0)} \mathbb{E}_{x(t)|x(0)} [||s_{\theta}(x(t), t) - \nabla_{x(t)} \log p_{0t}(x(t)|x(0))||_2^2] \right\}$ known Gaussian when f(x, t) if affine

Discretizations

dx = f(x, t)dt + g(t)dw

SDE Form	Discrete Markov Chain	SDE Expression
Variance Exploding (VE) SDE (NCSN)	$x_i = x_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} z_{i-1}$	$\mathrm{d}x = \sqrt{\frac{\mathrm{d}[\sigma^2(t)]}{\mathrm{d}t}}\mathrm{d}w$
Variance Preserving (VP) SDE (DDPM)	$x_i = \sqrt{1 - \beta_i} x_{i-1} + \sqrt{\beta_i} z_{i-1}$	$\mathrm{d}x = \frac{1}{2}\beta(t)x\mathrm{d}t + \sqrt{\beta(t)}\mathrm{d}w$

SDE-based Generative Models: A Unified Framework

Model: DDPM and SDE point of views

Score in score-based model is affine transformation of predicted noise in DDPM

$$oldsymbol{x}_{t} = \sqrt{ar{lpha}_{t}} oldsymbol{x}_{0} + \sqrt{1 - ar{lpha}_{t}} \cdot oldsymbol{arepsilon}$$
 Equivalent one step forward
 $oldsymbol{s}_{ heta}(oldsymbol{x}_{t},t) \approx
abla_{oldsymbol{x}_{t}} \log p(oldsymbol{x}_{t} | oldsymbol{x}_{0})$ Denoising score matching
 $= -rac{oldsymbol{x}_{t} - \sqrt{ar{lpha}_{t}} oldsymbol{x}_{0}}{1 - ar{lpha}_{t}}$ Gaussian assumption
 $= -rac{oldsymbol{arepsilon}}{\sqrt{1 - ar{lpha}_{t}}}$ $\displaystyle lpha_{oldsymbol{arepsilon}}$ $\displaystyle = -rac{oldsymbol{arepsilon}}{\sqrt{1 - ar{lpha}_{t}}}$

SDE-based Generative Models: A Unified Framework

Controllable Generation

$$dx = [f(x,t) - g(t)^{2} \nabla_{x} \log p_{t}(x|y)] dt + g(t) d\bar{w}$$

$$\int \text{Bayesian}$$

$$dx = \{f(x,t) - g(t)^{2} [\nabla_{x} \log p_{t}(x) + \nabla_{x} \log p_{t}(y|x)] \} dt + g(t) d\bar{w}$$

unconditional model

ILVR: Conditioning Method for DDPM*

*[2108.02938] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (arxiv.org)

RePaint: Inpainting using Denoising Diffusion Probabilistic Models*

Same idea but different downstream tasks from ILVR

Algorithm 1 Inpainting using our RePaint approach.

1: $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for t = T, ..., 1 do for $u = 1, \ldots, U$ do 3: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\epsilon = \mathbf{0}$ 4: unconditional $x_{t-1}^{\text{known}} = \sqrt{\bar{\alpha}_t} x_0 + (1 - \bar{\alpha}_t) \epsilon$ 5: $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ 6: $x_{t-1}^{\text{unknown}} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(x_t, t) \right) + \sigma_t \boldsymbol{z}$ 7: $x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1-m) \odot x_{t-1}^{\text{unknown}}$ 8: if u < U and t > 1 then 9: $x_t \sim \mathcal{N}(\sqrt{1-\beta_{t-1}}x_{t-1}, \beta_{t-1}\mathbf{I})$ 10: end if 11: 12: end for 13: end for 14: return x_0

Diffusion Posterior Sampling for General Noisy Inverse Problems*

General forward model $\ m{y} = \mathcal{A}(m{x}_0) + m{n}, \quad m{y}, m{n} \in \mathbb{R}^n, \ m{x} \in \mathbb{R}^d$

→ S_A*

Algorithm 2 DPS - Gaussian [8] **Require:** *N*, *y*, $\{\zeta_i\}_{i=1}^N, \{\tilde{\sigma}_i\}_{i=1^N}$ 1: $x_N \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for i = N - 1 to 0 do 3: $\hat{s} \leftarrow s_{\theta}(x_i, i)$ 4: $\hat{x}_0 \leftarrow \frac{1}{\sqrt{\bar{\alpha}_i}} (x_i + \sqrt{1 - \bar{\alpha}_i} \hat{s})$ 5: $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 6: $x'_{i-1} \leftarrow \frac{\sqrt{\alpha_i}(1-\bar{\alpha}_{i-1})}{1-\bar{\alpha}_i} x_i + \frac{\sqrt{\bar{\alpha}_{i-1}}\beta_i}{1-\bar{\alpha}_i} \hat{x}_0 + \tilde{\sigma}_i z$ 7: $x_{i-1} \leftarrow x'_{i-1} - \zeta_i \nabla_{x_i} \| y - \mathscr{A}(\hat{x}_0) \|_2^2$ 8: **return** *x*₀

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t | \boldsymbol{y}) = \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t) + \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{y} | \boldsymbol{x}_t)$$
$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t | \boldsymbol{y}) \simeq \boldsymbol{s}_{\theta^*}(\boldsymbol{x}_t, t) - \rho \nabla_{\boldsymbol{x}_t} \| \boldsymbol{y} - \mathcal{A}(\hat{\boldsymbol{x}}_0) \|_2^2$$

HQS as one diffusion step

$$\begin{cases} \hat{\mathbf{x}}_t = \operatorname*{arg\,min}_{\mathbf{x}_t} \|\mathbf{y} - \mathcal{H}(\mathbf{x}_t)\|^2 + \mu \sigma_n^2 \|\mathbf{x}_t - \hat{\mathbf{z}}_t\|^2 \\ \hat{\mathbf{z}}_t = \operatorname*{arg\,min}_{\mathbf{z}_t} \frac{1}{2(\sqrt{\lambda/\mu})^2} \|\mathbf{z}_t - \hat{\mathbf{x}}_t\|^2 + \mathcal{P}(\mathbf{z}_t) \end{cases}$$

Algorithm 2 Extended Sampling I: DPS y_t Require: $\mathbf{s}_{\theta}, T, \mathbf{y}, \sigma_n, \{\sigma_t\}_{t=1}^T, \lambda$ 1: Initialize $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for t = T to 1 do 3: $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 4: $\mathbf{z}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sqrt{\beta_t} \epsilon_t // \text{ one step}$ reverse diffusion sampling 5: $\mathbf{x}_{t-1} = \mathbf{z}_{t-1} - \frac{\sigma_t^2}{2\lambda\sigma_n^2} \nabla_{\mathbf{z}_{t-1}} ||\mathbf{y}_{t-1} - \mathcal{H}(\mathbf{z}_{t-1})||^2 // \text{ Solving}$ data proximal subproblem

- 6: **end for**
- 7: return \mathbf{x}_0

$$\arg_{\mathbf{x}_{t}} \min ||\mathbf{y} - \mathcal{H}(\mathbf{x}_{t})||^{2} + \mu \sigma_{n}^{2} ||\mathbf{x}_{t} - \hat{\mathbf{z}}_{t}||^{2}$$
$$\mathbf{\hat{x}}_{t} \approx \hat{\mathbf{z}}_{t} - \frac{\sigma_{t}^{2}}{2\lambda \sigma_{n}^{2}} \nabla_{\mathbf{z}_{t}} ||\mathbf{y} - \mathcal{H}(\mathbf{z}_{t})||^{2}$$

$$\nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t}) \simeq \nabla_{\mathbf{x}_{t}} \log \tilde{p}(\mathbf{y} \mid \mathbf{x}_{t})$$
$$= \frac{1}{\sqrt{\bar{\alpha}_{t}}} \mathbf{A}^{T} \left(\sigma^{2} \mathbf{I} + \frac{1 - \bar{\alpha}_{t}}{\bar{\alpha}_{t}} \mathbf{A} \mathbf{A}^{T} \right)^{-1} \left(\mathbf{y} - \frac{1}{\sqrt{\bar{\alpha}_{t}}} \mathbf{A} \mathbf{x}_{t} \right)$$

A itself is row-orthogonal

$$[\nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y} \mid \mathbf{x}_t)]_m = \frac{\mathbf{a}_m^T \left(\mathbf{y} - \frac{1}{\sqrt{\bar{\alpha}_t}} \mathbf{A} \mathbf{x}_t \right)}{\sigma^2 \sqrt{\bar{\alpha}_t} + \frac{1 - \bar{\alpha}_t}{\sqrt{\bar{\alpha}_t}} \|\mathbf{a}_m\|_2^2}$$

efficient computation via SVD

$$\nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t}) \simeq \nabla_{\mathbf{x}_{t}} \log \tilde{p}(\mathbf{y} \mid \mathbf{x}_{t})$$
$$= \frac{1}{\sqrt{\bar{\alpha}_{t}}} \mathbf{V} \mathbf{\Sigma} \left(\sigma^{2} \mathbf{I} + \frac{1 - \bar{\alpha}_{t}}{\bar{\alpha}_{t}} \mathbf{\Sigma}^{2} \right)^{-1} \left(\mathbf{U}^{T} \mathbf{y} - \frac{1}{\sqrt{\bar{\alpha}_{t}}} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{x}_{t} \right),$$
(12)

Algorithm 1: DMPS: DM based posterior sampling Input: y, A, σ^2 , $\{\tilde{\sigma}_t\}_{t=1}^T, \lambda$ Initialization: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 1 for t = T to 1 do Draw $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2 $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \right) + \tilde{\sigma}_t \mathbf{z}_t$ 3 Compute $\nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y} \mid \mathbf{x}_t)$ as (12) 4 5 $\mathbf{x}_{t-1} = \mathbf{x}_{t-1} + \lambda \frac{1-\alpha_t}{\sqrt{\alpha_t}} \nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y} \mid \mathbf{x}_t)$ **Output:** \mathbf{x}_0

2343] Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems (arxiv.org)

Denoising Diffusion Restoration Models (DDRM)*

[H = Diagonal with 0 and 1's]

$$\mathbf{U} = H\mathbf{x}_0 + \mathbf{z}$$
 \Longrightarrow $\mathbf{U}^{\top}\mathbf{y} = \mathbf{\Sigma}(\mathbf{V}^{\top}\mathbf{x}_0) + \mathbf{U}^{\top}\mathbf{z}$

*[2201.11793] Denoising Diffusion Restoration Models (arxiv.org)

Denoising Diffusion Restoration Models (DDRM)*

*[2201.11793] Denoising Diffusion Restoration Models (arxiv.org)

These equations in DDRM are in VESDE form

Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model*

Decouple
$$\mathbf{x} \equiv \mathbf{A}^{\dagger} \mathbf{A} \mathbf{x} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}$$

range-space of \mathbf{A} null-space of \mathbf{A}
Consistency: $\mathbf{A} \hat{\mathbf{x}} \equiv \mathbf{y}$, Realness: $\hat{\mathbf{x}} \sim q(\mathbf{x})$
Reconstruction $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \bar{\mathbf{x}}$ find a proper $\bar{\mathbf{x}}$ that makes the null-space term
is in harmony with the range-space term
Diffusion Models $\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}$
 $\mathbf{X}_{T} + \cdots + \mathbf{X}_{t}$ $\underbrace{\mathbf{x}_{0|t}}_{(\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}}_{(\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}}$

*[2212.00490] Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model (arxiv.org)

 $-- - A^{\dagger} A - + (T - A^{\dagger} A) -$

Algorithm 1 Sampling of DDNM	Algorithm 2 Sampling of DDNM ⁺
$\begin{array}{ll} 1: \ \mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I}) \\ 2: \ \mathbf{for} \ t = T,, 1 \ \mathbf{do} \end{array}$	$ \frac{1: \mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})}{2: \text{ for } t = T, \dots, 1 \text{ do}} $
3: $\mathbf{x}_{0 t} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \mathcal{Z}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \sqrt{1 - \bar{\alpha}_t} \right)$	5: $L = \min\{T - t, t\}$ 4: $\mathbf{x}_{t+L} \sim q(\mathbf{x}_{t+L} \mathbf{x}_t)$ 5: $\mathbf{for} \ j = L,, 0 \ \mathbf{do}$ 6: $\mathbf{x}_{0 t+j} = \frac{1}{\sqrt{\bar{\alpha}_{t+j}}} \left(\mathbf{x}_{t+j} - \mathcal{Z}_{\boldsymbol{\theta}}(\mathbf{x}_{t+j}, t+j)\sqrt{1 - \bar{\alpha}_{t+j}}\right)$
4: $\hat{\mathbf{x}}_{0 t} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0 t}$ 5: $\mathbf{x}_{t-1} \sim p(\mathbf{x}_{t-1} \mathbf{x}_t, \hat{\mathbf{x}}_{0 t})$ 6: return \mathbf{x}_0	7: $\hat{\mathbf{x}}_{0 t+j} = \mathbf{x}_{0 t+j} - \mathbf{\Sigma}_{t+j} \mathbf{A}^{\dagger} (\mathbf{A} \mathbf{x}_{0 t+j} - \mathbf{y})$ 8: $\mathbf{x}_{t+j-1} \sim \hat{p}(\mathbf{x}_{t+j-1} \mathbf{x}_{t+j}, \hat{\mathbf{x}}_{0 t+j})$ 9: return \mathbf{x}_0

IIGDM: Pseudoinverse-Guided Diffusion Models for Inverse Problems*

*Pseudoinverse-Guided Diffusion Models for Inverse Problems | OpenReview

On Equivalence of Diffusion Posterior Sampling Strategies

DPS
$$\hat{\mathbf{x}}_t \approx \mathbf{x}_t - \zeta_t \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t)$$

 $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) \simeq \nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y} | \mathbf{x}_t)$
 $= \frac{1}{\sqrt{\bar{\alpha}_t}} \mathbf{A}^T \left(\sigma^2 \mathbf{I} + \frac{1 - \bar{\alpha}_t}{\bar{\alpha}_t} \mathbf{A} \mathbf{A}^T \right)^{-1} \left(\mathbf{y} - \frac{1}{\sqrt{\bar{\alpha}_t}} \mathbf{A} \mathbf{x}_t \right)$
Some coefficient
DDNM $\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}$
 $= \mathbf{x}_{0|t} - (\mathbf{A}^{\dagger} \mathbf{A} \mathbf{x}_{0|t} - \mathbf{A}^{\dagger} \mathbf{y})$
 $= \mathbf{x}_{0|t} - \mathbf{A}^{\dagger} (\mathbf{A} \mathbf{x}_{0|t} - \mathbf{y})$

Solving Image Restoration Tasks Iteratively (Traditional PnP Methods)

Image Restoration by Iterative Denoising and Backward Projections

Algorithm 2 Iterative Denoising and Backward Projections (IDBP)

Input: H, y, σ_e , denoising operator $\mathcal{D}(\cdot; \sigma)$, stopping criterion. y = Hx + e, such that $e \sim \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I}_m)$ and x is an unknown signal whose prior model is specified by $\mathcal{D}(\cdot; \sigma)$. Output: \hat{x} an estimate for x. Initialize: \tilde{y}_0 = some initialization, k = 0, δ approx. satisfying (12). while stopping criterion not met do $\begin{vmatrix} k = k + 1; \\ \tilde{x}_k = \mathcal{D}(\tilde{y}_{k-1}; \sigma_e + \delta); \\ \tilde{y}_k = H^{\dagger}y + (\mathbf{I}_n - H^{\dagger}H)\tilde{x}_k; \end{vmatrix}$ end $\hat{x} = \tilde{x}_k;$

What are the advantages of diffusion sampling framework?

In our experiment all methods use the same diffusion model checkpoints

Plug-and-Play Image Restoration with Deep Denoiser Prior

Algorithm 1: Plug-and-play image restoration with deep denoiser prior (DPIR).

Input : Deep denoiser prior model, degraded image \mathbf{y} , degradation operation \mathcal{T} , image noise level σ , σ_k of denoiser prior model at *k*-th iteration for a total of *K* iterations, trade-off parameter λ .

Output: Restored image \mathbf{z}_K .

- 1 Initialize \mathbf{z}_0 from \mathbf{y} , pre-calculate $\alpha_k \triangleq \lambda \sigma^2 / \sigma_k^2$.
- 2 for $k = 1, 2, \cdots, K$ do
- 3 $\mathbf{x}_k = \arg\min_{\mathbf{x}} \|\mathbf{y} \mathcal{T}(\mathbf{x})\|^2 + \alpha_k \|\mathbf{x} \mathbf{z}_{k-1}\|^2$; // Solving data subproblem
- 4 $\mathbf{z}_k = Denoiser(\mathbf{x}_k, \sigma_k)$; // Denoising with deep DRUNet denoiser and periodical geometric self-ensemble

5 end

- \rightarrow well-defined path connecting two distributions
- \rightarrow schedule is all you need!!

Sampling from Langevin Dynamics?

[2103.04715] Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie (arxiv.org)

Algorithm 1 PnP-ULA

Require: $n \in \mathbb{N}, y \in \mathbb{R}^m, \varepsilon, \lambda, \alpha, \delta > 0, \mathbb{C} \subset \mathbb{R}^d$ convex and compact **Ensure:** $2\lambda(2L_y + \alpha L/\varepsilon) \leq 1$ and $\delta < (1/3)(L_y + 1/\lambda + \alpha L/\varepsilon)^{-1}$ **Initialization:** Set $X_0 \in \mathbb{R}^d$ and k = 0. **for** k = 0 : N **do** $Z_{k+1} \sim \mathcal{N}(0, \mathrm{Id})$ $X_{k+1} = X_k + \delta \nabla \log(p(y|X_k)) + (\alpha \delta/\varepsilon)(D_{\varepsilon}(X_k) - X_k) + (\delta/\lambda)(\Pi_{\mathsf{C}}(X_k) - X_k) + \sqrt{2\delta}Z_{k+1}$ **end for return** $\{X_k : k \in \{0, \dots, N+1\}\}$

[1611.02862] The Little Engine that Could: Regularization by Denoising (RED) (arxiv.org) An Interpretation Of Regularization By Denoising And Its Application With The Back-Projected Fidelity Term

$$egin{aligned} oldsymbol{x}_{k+1} &=& oldsymbol{x}_k - \mu \left(
abla \ell_{LS}(oldsymbol{x}_k) + \lambda oldsymbol{g}_{ ext{RED}}(oldsymbol{x}_k)
ight) & oldsymbol{x}_{k+1} = oldsymbol{x}_k - \mu \left(
abla \ell_{BP}(oldsymbol{x}_k) + \lambda oldsymbol{g}_{ ext{RED}}(oldsymbol{x}_k)
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) + \lambda (oldsymbol{x}_k - \mathcal{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) + \lambda (oldsymbol{x}_k - \mathcal{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) + \lambda (oldsymbol{x}_k - \mathcal{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) + \lambda (oldsymbol{x}_k - \mathcal{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) + \lambda (oldsymbol{x}_k - \mathcal{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{x}_k - \mu \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{X}_k - oldsymbol{A} \left(oldsymbol{A}^{T}(oldsymbol{A}oldsymbol{x}_k - oldsymbol{D}(oldsymbol{x}_k;\sigma))
ight) & =& oldsymbol{X}_k - oldsymbol{A} \left(oldsymbol{A} oldsymbol{A} oldsymbol{x}_k;\sigma)
ight) & =& oldsymbol{X}_k - oldsymbol{A} \left(oldsymbol{A} oldsymbol{X}_k - oldsymbol{A} oldsymbol{X}_k;\sigma)
ight)
ight) & =& oldsymbol{X}_k - oldsymbol{A} \left(oldsymbol{A} oldsymbol{A} oldsymbol{A} oldsymbol{A} ol$$

Metropolis-adjusted Langevin algorithm (MALA) sampler

$$\begin{aligned} x_{t+1} &= x_t + \epsilon_1 \frac{\partial \log p(x_t)}{\partial x_t} + \epsilon_2 \frac{\partial \log p(y = y_c | x_t)}{\partial x_t} + N(0, \epsilon_3^2) \\ & \frac{\partial \log p(x)}{\partial x} \approx \frac{R_x(x) - x}{\sigma^2} \quad \text{Denoising AutoEncoder output as score} \\ h_{t+1} &= h_t + \epsilon_1 (R_h(h_t) - h_t) + \epsilon_2 \frac{\partial \log C_c(G(h_t))}{\partial G(h_t)} \frac{\partial G(h_t)}{\partial h_t} \quad + N(0, \epsilon_3^2) \\ & \text{latent} \qquad \text{prior} \qquad \text{condition} \qquad \text{noise} \\ & realistic \qquad \text{e.g. class-specific} \qquad diverse \end{aligned}$$

*[1612.00005] Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space (arxiv.org)