Di[M]O: Distilling Masked Diffusion Models into One-step Generator

Yuanzhi Zhu, Xi Wang, Stéphane Lathuilière, Vicky Kalogeiton

LIX, École Polytechnique, CNRS, IPP, Inria, Univ. Grenoble Alpes, CNRS, LJK

Ínnía -

- <u>Preliminaries</u>
- <u>Methods</u>
- <u>Results</u>

Text

Multi-round Dialogue Case

User	Could you please share with me what the initial two lines of the renowned noem 'The
0.00.	Road Not Taken'?
LLaDA	Certainly! The initial two lines of the renowned poem "The Road Not Taken" by Robert Frost are: "Two roads diverged in a yellow wood, And sorry I could not travel both." These lines set the stage for the poem, introducing the idea of a speaker facing a choice between
User	two paths.
User	Please nelp me translate into Chinese.
LLaDA	Sure! The first two lines of "The Road Not Taken" by Robert Frost can be translated into Chinese as: "两条路分岔在黄色的树林中,遗憾我不能同时走"
User	Please translate into German.
LLaDA	Sure! The first two lines of "The Road Not Taken" by Robert Frost can be translated into German as: "Zwei Wege trennten sich im gelben Wald, und leider konnte ich nicht beide tun."
User	Please also write a poem about life choices. I require 5 sentences, and the first word of each sentence starts with C as the first letter.
LLaDA	Certainly! Here's a poem about life choices, with each sentence starting with the letter "C": Choices cascade through life's journey, Creating connections with each decision, Careful consideration leads to better paths, Courageous choices shape our destiny, Choosing wisely guides us through the years.

Image

Protein

Multi-modality

Forward Process: mask *independently* each token at position *i*

$$q_{t|0}(x_t|x_0) = \prod_{i=0}^{L-1} \operatorname{Cat}(x_t^i; (1-r_t)\delta(x_0^i) + r_t\delta([\mathtt{M}]))$$

Reverse Process: fill mask conditional *independently*

Predicted Probability: $p_{\phi}(x_0^i|x_t) := \operatorname{softmax}\left(z_{\phi}^i(x_t)/\tau\right)$

Masked Tokens

Predicted Tokens

$$\mathcal{L}_{\text{MDM}} = \mathbb{E}_{x_0,t} \left[\left(\mathbb{E}_{q_{t|0}} \left[-\log p_{0|t}(x_0|x_t,\phi) \right] \right) \right]$$

Sampling Process

Theorem: Minimizing the *expected* cross-entropy *loss* is equivalent to maximizing the upper bound on the negative log-likelihood, i.e.:

$$-\mathbb{E}_{p_{\text{data}}(x_0)}[\log p_{\theta}(x_0)] \le \mathcal{L}_{\text{MDM}}(\theta)$$

MDM loss (maximize likelihood) + Transformer (less inductive bias) + Data \rightarrow Scalability ?

[2406.03736] Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data

Promise of MDM

Limitations of MDM

- Incorrect joint distribution for multi-token prediction 😕
- Need sufficient steps for better performance 😕

Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms

Jiaming Song, Linqi Zhou

Luma AI

Multi-token prediction (MTP) is of great interest to the language modeling community because of its potential to achieve faster inference [GIR+24], which allows efficient inference-time scaling. However, the current multi-token prediction models often predict the softmax values of multiple tokens in parallel, which is a naïve conditional independence assumption (*i.e.*, naïve Bayes). We argue that this inference design greatly limits the capacity of the model distribution and more efforts should be spent resolving this fundamental issue.

Theoretical Benefit and Limitation of Diffusion Language Model

Guhao Feng $^{\ast\,1}~$ Yihan Geng $^{\ast\,1}~$ Jian Guan $^2~$ Wei Wu $^2~$ Liwei Wang $^1~$ Di He $^1~$

such as a reasoning chain-we show that the required sampling steps must scale linearly with sequence length to obtain "correct" sequences, thereby eliminating MDM's efficiency advantage over autoregressive models. Our analysis estab-

[2503.07154] Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms [2502.09622] Theoretical Benefit and Limitation of Diffusion Language Model

- <u>Preliminaries</u>
- <u>Methods</u>
- <u>Results</u>

Initial Distribution

Close to the input distribution (masked token sequences) used to train the teacher model

Intermediate Samples

Via forward mask diffusion process

Consider loss on each intermediate state \tilde{x}_t

$$\mathcal{L}_{\mathrm{Di}[M]O}(\theta) := \mathbb{E}_{x_{\mathrm{init}},t} \left[w(t) \left(\mathbb{E}_{q_{t}|0} \left[D(p_{\phi}||p_{\theta})(\tilde{x}_{t}) \right] \right) \right]$$

Further decompose into *Token-level* Divergence

$$D(p_{\phi} \| p_{\theta})(\tilde{x}_t) := \frac{1}{L_M} \sum_{\substack{i=1\\\tilde{x}_t^i = [\mathsf{M}]}}^{L} D(p_{\phi}(x_0^i | \tilde{x}_t) \| p_{\theta}(x_0^i | \tilde{x}_t))$$

Gradient of Divergence:

$$\nabla_{\theta} D((p_{\phi}||p_{\theta})(\tilde{x}_{t})) = \frac{\nabla_{z_{\theta}} D(p_{\phi}||p_{\theta})(\tilde{x}_{t})}{\mathrm{d}\theta} \frac{\mathrm{d}z_{\theta}(\tilde{x}_{t})}{\mathrm{d}\theta}$$

Intractable terms

$$p_{\theta}(x_0^i | \tilde{x}_t) = \operatorname{softmax}(z_{\theta}(\tilde{x}_t))$$

Introduce an *auxiliary model* to approximate the student output on intermediate samples

 $p_{\psi}(x_0^i | \tilde{x}_t) \approx p_{\theta}(x_0^i | \tilde{x}_t)$

 $\nabla_{\boldsymbol{z}_{\boldsymbol{\theta}}} D(p_{\phi} || \boldsymbol{p}_{\boldsymbol{\theta}})(\tilde{x}_{t}) \quad \boldsymbol{\Box} \quad \boldsymbol{\nabla}_{\boldsymbol{z}_{\boldsymbol{\psi}}} D(p_{\phi} || \boldsymbol{p}_{\boldsymbol{\psi}})(\tilde{x}_{t})$

Approximation: $z_{\theta}(\tilde{x}_t)$

We approximate the output logits based on the *consistency assumption*

Also, we require this term as effective gradient for the generator

Overview of the Method

$$\nabla_{\theta} \mathcal{L}_{\mathrm{Di}[M]O} \approx \mathbb{E}_{x_{\mathrm{init}},t} \left[w(t) \left(\mathbb{E}_{q_{t|O}} \left[\left. \nabla_{z_{\psi}} D(p_{\phi} || p_{\psi})(\tilde{x}_{t}) \right| \frac{\mathrm{d}z_{\theta}(x_{\mathrm{init}})}{\mathrm{d}\theta} \right] \right) \right]$$

Overview of the Method

- From random initial states to samples from *correct joint distribution* ©
- Greatly reduce the sampling steps \rightarrow One step generation \bigcirc

- <u>Preliminaries</u>
- <u>Methods</u>
- <u>Results</u>

Visual Results

Teacher 16 steps

Visual Results

Visual Results

Runtime Comparison

10.5 s/image

0.80 s/image

Quantitative Results (MaskGit Teacher)

ImageNet	Method	Step (\downarrow)	$\mathrm{FID}\left(\downarrow\right)$	IS (†)	Precision (†)	Recall (†)	Density (†)	Coverage (†)
Teacher	MaskGit [7]	16	6.60	224.07	0.831	0.402	1.246	0.977
	MaskGit [7]	8	6.66	221.57	0.827	0.397	1.233	0.974
	MaskGit [7]	4	10.73	192.29	0.748	0.313	1.011	0.920
	MaskGit [7]	2	91.35	13.37	0.178	0.164	0.091	0.122
Sampler	θ -trapezoidal [81]*	64	6.7	-	-	-	-	-
Sampler	θ -trapezoidal [81]*	32	7.1	-	-	-	-	-
	di4c [31]	4	6.79	209.2	-	-	-	-
Distillation	di4c-d [31]	4	6.57	213.6	-	-	-	-
	Di[M]O	1	6.91	214.0	0.828	0.377	1.255	0.967

Quantitative Results (Meissonic Teacher)

HPS v2.0								
Model	Step	Anim.	Concept-art	Painting	Photo	Averaged		
Latent Diffusion [83]	25	25.73	25.15	25.25	26.97	25.78		
DALL·E 2 [79]	-	27.34	26.54	26.68	27.24	26.95		
Stable Diffusion v1.4 [83]	50	27.26	26.61	26.66	27.27	26.95		
Stable Diffusion v2.0 [83]	50	27.48	26.89	26.86	27.46	27.17		
DeepFloyd-XL [19]	25	27.64	26.83	26.86	27.75	27.27		
SDXL Base 1.0 [76]	50	28.88	27.88	27.92	28.31	28.25		
SDXL Refiner 1.0 [76]	50	28.93	27.89	27.90	28.38	28.27		
InstaFlow [55]	1	25.98	25.79	25.93	26.32	26.01		
SD Turbo [90]	1	27.98	27.59	27.16	27.19	27.48		
SwiftBrush v2 [18]	1	27.25	27.62	26.86	26.77	27.15		
	48	29.57	28.58	28.72	28.45	28.83		
	32	29.18	28.32	28.28	27.96	28.44		
Maissonia [4]	16	28.61	27.82	27.84	27.32	27.90		
Meissonic [4]	8	25.62	26.49	26.67	27.07	26.46		
	4	25.01	24.95	24.87	23.80	24.66		
	2	23.06	23.28	23.22	22.38	22.98		
Di[M]O	1	28.64	27.91	27.99	27.92	28.11		

GenEval									
Model	Step	Overall	Obje Single	ects Two	Counting	Colors	Position	Color Attribution	
SD v1.5 [83]	50	0.43	0.97	0.38	0.35	0.76	0.04	0.06	
SD v2.1 [83]	50	0.50	0.98	0.51	0.44	0.85	0.07	0.17	
DALL-E2 [79]	-	0.52	0.94	0.66	0.49	0.77	0.10	0.19	
SDXL [76]	50	0.55	0.98	0.74	0.39	0.85	0.15	0.23	
	48	0.54	0.99	0.66	0.42	0.86	0.10	0.22	
	32	0.46	0.92	0.53	0.33	0.80	0.08	0.13	
Maissonia [4]	16	0.37	0.82	0.39	0.20	0.70	0.05	0.08	
Meissonic [4]	8	0.20	0.58	0.12	0.05	0.40	0.02	0.04	
	4	0.09	0.31	0.02	0.01	0.18	0.01	0.01	
	2	0.03	0.14	0.01	0.00	0.05	0.00	0.00	
Di[M]O	1	0.43	0.91	0.53	0.22	0.75	0.07	0.11	

Thank You!