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Text Image
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Mask Diffusion Models
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Forward Process: mask independently each token at position i

Forward



Mask Diffusion Models
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Reverse Process: fill mask conditional independently

Predicted Probability:



Mask Diffusion Models
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Mask Diffusion Models
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Bidirectional
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Predicted TokensMasked Tokens

Sampling Process

[2202.04200] MaskGIT: Masked Generative Image Transformer

https://arxiv.org/abs/2202.04200
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Bidirectional

Transformer

Predicted TokensMasked Tokens

[2406.03736] Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data

Theorem: Minimizing the expected cross-entropy loss is equivalent to maximizing the upper bound on 

the negative log-likelihood, i.e.:

MDM loss (maximize likelihood) + Transformer (less inductive bias) + Data   → Scalability ?

Promise of MDM

https://arxiv.org/abs/2406.03736
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[2502.09622] Theoretical Benefit and Limitation of Diffusion Language Model

[2503.07154] Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms

• Incorrect joint distribution for multi-token prediction 

• Need sufficient steps for better performance 

Limitations of MDM

https://arxiv.org/abs/2502.09622
https://arxiv.org/abs/2503.07154
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One-step 

Generator θ

Initial distribution

Teacher φ

One-step 

Generator θ

Intermediate samples

Divergence

Main Idea: Distillation in an On-Policy fashion

Match teacher and generator for all possible intermediate samples

llm_post_training_distillation
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https://drive.google.com/file/d/1xMohjQcTmQuUd_OiZ3hB1r47WB1WM3Am/view


Initial distribution

Initial Distribution 
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Close to the input distribution (masked token sequences) used to train the teacher model



One-step Generator θ

Logits
Tokens Masked Tokens

Sample Forward

Intermediate Samples
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Via forward mask diffusion process 



Consider loss on each intermediate state

Further decompose into Token-level Divergence
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Gradient of Divergence:

Intractable terms
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Approximation:

Introduce an auxiliary model to approximate the student output on intermediate samples

One-step 

Generator θ

Teacher φ

Auxiliary 

Model ψ

Teacher φ
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Approximation:

One-step 

Generator θ
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We approximate the output logits based on the consistency assumption
Also, we require this term as effective gradient for the generator



Overview of the Method
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Overview of the Method
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One-step 

Generator θ

• From random initial states to samples from correct joint distribution ☺

• Greatly reduce the sampling steps → One step generation ☺
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Visual Results
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Visual Results
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Visual Results
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Runtime Comparison



Quantitative Results (MaskGit Teacher)
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Quantitative Results (Meissonic Teacher)
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Thank  You!
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