

DIMO: DISTILLING MASKED DIFFUSION MODELS INTO ONE-STEP GENERATOR

Yuanzhi Zhu¹, Xi Wang¹, Stéphane Lathuilière², Vicky Kalogeiton¹ ¹LIX, École Polytechnique, CNRS, IPP ²Inria, Univ. Grenoble Alpes, CNRS, LJK https://yuanzhi-zhu.github.io/DiMO/

BACKGROUND

Masked Diffusion Models (MDMs) have emerged as a powerful generative modeling technique. Despite their remarkable results, they typically suffer from slow inference with several steps. In this paper, we propose Di[M]O, a novel approach that distills masked diffusion models into an one-step generator. Our contributions can be summarized as:

- We are the first to successfully achieve one-step distillation of MDMs.
- We propose Di[M]O, an on policy distillation method that enables the one-step distillation of MDMs, with proposed efficient token initialization.
- Our findings show that Di[M]O successfully reaches performance close to that of MDM teachers, while greatly enhancing the sampling efficiency.

// Generate tokens x_0

Sample $x_{\text{init}} \sim p_{\text{init}}, c \sim \mathcal{D}$

Compute generator logits $z_{\theta}(x_{\text{init}}, c) \in \mathbb{R}^{B \times h \times w \times V}$

sample token $x_{\theta} \in \mathbb{R}^{B \times h \times w}$ from $p_{\theta}(x_0|x_{\text{init}}) = \text{softmax}(z_{\theta}(x_{\text{init}},c))$

// Update generator θ

Sample $t \sim \mathcal{U}[0,1]$, $\tilde{x}_t \sim q_{t|0}(\tilde{x}_t|x_\theta(x_{\text{init}},c))$ // Forward

Calculate $p_{\phi}(x_0|\tilde{x}_t,c)$ and $p_{\psi}(x_0|\tilde{x}_t,c)$ Update θ with $\nabla_{\theta}\mathcal{L}_{\text{Di}[M]O}$ (Eq. (3))

// Update auxiliary model ψ

Update ψ with MDM loss to learn $x_{\theta}(x_{\text{init}}, c)$

ALGORITHM

The core idea is on-policy distillation, aligning the teacher and generator across all intermediate \tilde{x}_t .

$$\mathcal{L}_{\text{Di}[M]O}(\theta) := \mathbb{E}_{x_{\text{init}},t} \left[w(t) \left(\mathbb{E}_{q_{t|0}} [D(p_{\phi}||p_{\theta})(\tilde{x}_t)] \right) \right], \tag{1}$$

Similar to prior work (VSD, DMD, DI, SiD), we seek to approximate the following loss gradient:

$$\nabla_{\theta} \mathcal{L}_{\text{Di[M]O}} = \mathbb{E}_{x_{\text{init}},t} \left[w(t) \left(\mathbb{E}_{q_{t|0}} \left[\left. \nabla_{z_{\theta}} D(p_{\phi} || p_{\theta})(\tilde{x}_{t}) \right| \right. \right. \left. \left. \frac{dz_{\theta}(\tilde{x}_{t})}{d\theta} \right] \right) \right],$$

1. Approximation of $p_{\theta}(x_0^i | \tilde{x}_t)$:

 $\nabla_{z_{\theta}} D(p_{\phi}||p_{\theta})(\tilde{x}_t) \quad \longrightarrow \quad \nabla_{z_{\psi}} D(p_{\phi}||p_{\psi})(\tilde{x}_t)$

These approximations lead to the following gradient of loss:

$$abla_{ heta} \mathcal{L}_{ ext{Di}[ext{M}] ext{O}} pprox \mathbb{E}_{x_{ ext{init}},t} \left[w(t) \left(\mathbb{E}_{q_{t|0}} \left[\left. \frac{\nabla_{z_{\psi}} D(p_{\phi}||p_{\psi})(ilde{x}_{t})}{\nabla_{\phi} ||p_{\psi}|} \frac{\mathrm{d}z_{\theta}(x_{ ext{init}})}{\mathrm{d}\theta} \right] \right) \right].$$

In particular, we propose using Generalized Jeffrey Divergence to mitigate mode-seeking:

$$D_{\text{Jeffrey}}^{\beta} = (1 - \beta)D_{FKL} + \beta D_{RKL}.$$

Given that the orange term in Eq. (2) depends on both the teacher output $p_{\phi}(x_0^i|\tilde{x}_t)$ and the unknown student output $p_{\theta}(x_0^i | \tilde{x}_t)$, we follow VSD and introduce an auxiliary model ψ to approximate $p_{\theta}(x_0^i | \tilde{x}_t)$.

The approximation of the purple term must supply gradients for updating θ . Given this constraint, we approximate $z_{\theta}(\tilde{x}_t)$ with the one-step output $z_{\theta}(x_{\text{init}})$, assuming the consistency property.

> The gradient of FKL and RKL at each token position i are given by: $\frac{\partial D_{FKL_i}}{\partial z_{\psi}^i} = p_{\psi}(x_0^i | \tilde{x}_t) - p_{\phi}(x_0^i | \tilde{x}_t),$

$$\frac{\partial D_{RKL_i}}{\partial z_{\psi^i}} = p_{\psi}(x_0^i | \tilde{x}_t) \left(\log \left(\frac{p_{\psi}(x_0^i | \tilde{x}_t)}{p_{\phi}(x_0^i | \tilde{x}_t)} \right) - D_{RKL_i} \right).$$

CLASS-CONDITIONAL RESULTS

Quantitative results on class-conditional ImageNet-256. One-step Di[M]O matches teacher with 16× fewer steps.

	Method	Step (\downarrow)	FID (↓)	1S (†)	Prec. (↑)	Rec. (†)	Den. (↑)	Cov. (
Teacher	MaskGit	16	6.60	224.07	0.831	0.402	1.246	0.977
	MaskGit	8	6.66	221.57	0.827	0.397	1.233	0.974
	MaskGit	4	10.73	192.29	0.748	0.313	1.011	0.920
	MaskGit	2	91.35	13.37	0.178	0.164	0.091	0.122
Sampler	θ -trapezoidal	64	6.7	-	-	-	-	_
	θ -trapezoidal	32	7.1	-	-	-	-	-
	di4c	4	6.79	209.2	-	-	-	_
Distill.	di4c-d	4	6.57	213.6	-	-	-	_
	Di[M]O	1	6.91	214.0	0.828	0.377	1.255	0.96

SDXL

TEXT-TO-IMAGE RESULTS

