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Abstract

Plug-and-play Image Restoration (IR) has been widely
recognized as a flexible and interpretable method for solv-
ing various inverse problems by utilizing any off-the-shelf
denoiser as the implicit image prior. However, most exist-
ing methods focus on discriminative Gaussian denoisers.
Although diffusion models have shown impressive perfor-
mance for high-quality image synthesis, their potential to
serve as a generative denoiser prior to the plug-and-play
IR methods remains to be further explored. While several
other attempts have been made to adopt diffusion mod-
els for image restoration, they either fail to achieve satis-
factory results or typically require an unacceptable num-
ber of Neural Function Evaluations (NFEs) during infer-
ence. This paper proposes DiffPIR, which integrates the tra-
ditional plug-and-play method into the diffusion sampling
framework. Compared to plug-and-play IR methods that
rely on discriminative Gaussian denoisers, DiffPIR is ex-
pected to inherit the generative ability of diffusion models.
Experimental results on three representative IR tasks, in-
cluding super-resolution, image deblurring, and inpainting,
demonstrate that DiffPIR achieves state-of-the-art perfor-
mance on both the FFHQ and ImageNet datasets in terms
of reconstruction faithfulness and perceptual quality with
no more than 100 NFEs. The source code is available at
https://github.com/yuanzhi-zhu/DiffPIR

1. Introduction

Recent studies have demonstrated that plug-and-play Im-
age Restoration (IR) methods can effectively handle a vari-
ety of low-level vision tasks, such as image denoising [5],
image Super-Resolution (SR) [16, 17, 37], image deblur-
ring [12] and image inpainting [27], with excellent results
[6, 11, 54, 57, 58].

With the help of variable splitting algorithms, such as
the Alternating Direction Method of Multipliers (ADMM)
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Figure 1. Restoration examples of DiffPIR. We present the re-
stored images and corresponding measurements and ground truth
labels for several common image restoration tasks.

[4] and Half-Quadratic-Splitting (HQS) [22], plug-and-play
IR methods integrate Gaussian denoisers into the iterative
process, leading to improved performance and convergence.

The main idea of plug-and-play IR methods is to separate
the data term and prior term of the following optimization
problem

x̂ = argmin
x

1

2σ2
n

∥y −H(x)∥2 + λP(x), (1)

where y is the measurement of ground truth x0 given
the degradation model y = H(x0) + n, H is a known
degradation operator, σn denotes the known standard de-
viation of i.i.d. Gaussian noise n, and λP(·) is the prior
term with regularization parameter λ. To be specific, the
data term ensures that the solution adheres to the degra-
dation process, while the prior term enforces the solution
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follows the desired data distribution. In particular, the
prior term can be implicitly addressed by Gaussian denois-
ers [39, 47, 54, 59]. Venkatakrishnan et al. [54] proposed
to solve (1) by forming the augmented Lagrangian func-
tion and using the ADMM technique with various image-
denoising methods. Kamilov et al. [29] used the BM3D de-
noising operator [10] to solve the prior subproblem for non-
linear inverse problems. While the above methods used tra-
ditional denoisers, Zhang et al. [58] made the first attempt to
incorporate deep denoiser priors to solve various IR tasks.
In subsequent research, Zhang et al. [57] further proposed
a more powerful denoiser for plug-and-play IR, which has
since been adopted in numerous recent studies [1,3,21,34].

Unlike those traditional or convolutional neural network
based discriminative Gaussian denoisers, denoisers param-
eterized by deep generative models are expected to bet-
ter handle those ill-posed inverse problems due to their
ability to model complex distributions. Deep generative
models such as Generative Adversarial Networks (GANs)
[23,31], Normalizing Flows (NFs) [15] and Variational Au-
toencoders (VAEs) [33, 44] have been used as denoisers of
plug-and-play IR framework [18, 35, 55]. However, these
generative models are not designed for denoising tasks and
their generative capabilities are hindered when employed as
plug-and-play prior.

Recently, diffusion models have demonstrated the abil-
ity to generate images with higher quality [14, 41, 43] than
previous generative models such as GANs, VAEs and NFs.
Diffusion models define a forward diffusion process that
maps data to noise by gradually perturbing the input data
with Gaussian noise. While in the reverse process, they gen-
erate images by gradually removing Gaussian noise, with
the intuition from non-equilibrium thermodynamics [50].
The representative works in this area include Denoising Dif-
fusion Probabilistic Models (DDPM) [24] and score-based
Stochastic Differential Equation (SDE) [53]. In addition to
their unconditional generative power, diffusion models have
also achieved remarkable success in the field of general in-
verse problems. Saharia et al. [49] employed a conditional
network by using low-resolution images as conditional in-
puts to solve single-image SR. Lugmayr et al. [38] proposed
an improved sampling strategy that resamples iterations for
image inpainting. Chung et al. [8] introduced a Diffusion
Posterior Sampling (DPS) method with Laplacian approx-
imation for posterior sampling, which can be applied to
noisy non-linear inverse problems. Choi et al. [7] proposed
to adopt low-frequency information from measurement y
to guide the generation process towards a narrow data man-
ifold. Kawar et al. [32] endorsed a time-efficient approach
named Denoising Diffusion Restoration Models (DDRM)
which performs diffusion sampling to reconstruct the miss-
ing information in y in the spectral space of H with Singu-
lar Value Decomposition (SVD). While the above methods

achieve promising results, these methods either are hand-
designed (e.g., [38]) or suffer from low sampling speed to
get favorable performance (e.g., [8, 32]).

There exists another line of work, known as plug-and-
play posterior sampling methods, which leverage the gradi-
ent of log posteriors to drive the samples to high-density re-
gions. In this approach, the posteriors are decomposed into
explicit likelihood functions and plug-and-play priors. Dur-
mus et al. [19] proposed a Moreau-Yosida regularised unad-
justed Langevin algorithm for Bayesian computation such
as inverse problems. Laumont et al. [36] extended this idea
with Tweedie’s identity [20] and introduced PnP-unadjusted
Langevin algorithm for image inverse problems. Both Ro-
mano et al. [45] and Kadkhodaie et al. [28] explicitly es-
tablished the connection between a prior and a denoiser and
used denoisers for stochastic posterior sampling.

Inspired by the ability of plug-and-play IR to utilize any
off-the-shelf denoisers as an implicit image prior, and con-
sidering that diffusion models are essentially generative de-
noisers, we propose denoising diffusion models for plug-
and-play IR, referred to as DiffPIR. Following the plug-and-
play IR method proposed in [57], we decouple the data term
and the prior term and solve them iteratively within the dif-
fusion sampling framework. The data term can be solved
independently, allowing DiffPIR to handle a wide range of
degradation models with various degradation operators H.
As for the prior term, it can be solved using an off-the-shelf
diffusion model as a plug-and-play denoiser prior [32].

We conduct experiments on different IR tasks such as
SR, image deblurring and image inpainting on FFHQ [31]
and ImageNet [46]. By comparing our method with the
other competitive approaches, we demonstrate that DiffPIR
can efficiently restore images with superior quality (see the
visual examples shown in Figure 1).

2. Background
2.1. Score-based Diffusion Models

Diffusion is the process of destructing a signal (image)
by adding Gaussian noise until the signal-to-noise ratio is
negligible. This forward process can be described by an Itô
SDE [53]:

dx = f(x, t)dt+ g(t)dw, (2)

where w is the standard Wiener process, f(·, t) is a vector-
valued function called the drift coefficient, and g(·, t) is a
scalar function known as the diffusion coefficient.

The diffusion process described in (2) can be reversed in
time and has the form of [2]:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, (3)

where pt(x) is the marginal probability density at timestep
t, and the only unknown part ∇x log pt(x) can be mod-
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elled as so-called score function sθ(x, t) with score match-
ing methods [26,52]. We utilize the convention of denoting
the x at t as xt in subsequent discussions.

We can generate data samples according to (3) by eval-
uating the score function sθ(xt, t) at each intermediate
timestep during sampling, even if the initial state is Gaus-
sian noise. The training objective of time-dependent score
function sθ(xt, t) with denoising score matching can be for-
mulated as:

Et

{
γ(t)Ex0

Ext|x0

[
∥sθ(xt, t)−∇xt

log p0t(xt|x0)∥22
]}

,

(4)
where γ(t) is a positive weight coefficient, t is uniformly
sampled over [0, T ], (x0,xt) ∼ p0(x)p0t(xt|x0). We can
observe from (4) that a well-trained denoising score func-
tion sθ(xt, t) is also an ideal Gaussian denoiser under the
circumstance that the transition probability p0t(xt|x0) is
Gaussian.

2.2. Denoising Diffusion Probabilistic Models

For the specific choice of f(x, t) = − 1
2β(t)x and

g(x, t) =
√
β(t), we have the forward and reverse SDEs

as the continuous version of the diffusion process in DDPM
[24]. One forward step of (discrete) DDPM is

xt =
√
1− βtxt−1 +

√
βtϵt−1, (5)

with ϵt−1 ∼ N (0, I). The sample xt is obtained by adding
i.i.d. Gaussian noise with variance βt and scaling xt−1 with√
1− βt. In this way, the total variance is preserved and

DDPM is also called “Variance Preserving (VP)” SDE [53].
We can also sample xt at an arbitrary timestep t from x0 in
closed form thanks to the good properties of Gaussian:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (6)

with new variance 1 − ᾱt and scaling factor
√
ᾱt. In this

work, {βt} is the noise schedule and we use the same no-
tation αt = 1 − βt and ᾱt =

∏t
s=1 αs following Ho et

al. [24]. One reverse step of DDPM is

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)
+
√

βtϵt, (7)

where ϵθ(x, t) is the function approximator intended to pre-
dict the total noise ϵ between xt and x0 in (6).

In DDPM, the goal is to learn the noise added to x0;
in score-based SDE, the goal is to learn the score function,
the gradient of log-density of perturbed data; both with a
U-Net. The connection between score function and noise
prediction in DDPM can be formulated approximately as:
sθ(xt, t) ≈ − ϵθ(xt,t)√

1−ᾱt
. From now on, we use both ϵθ(x, t)

and sθ(x, t) to represent diffusion models.
In order to sample with diffusion models more effi-

ciently, Song et al. proposed Denoising Diffusion Implicit

Models (DDIM) [51], where the diffusion process can be
extended from Markovian to non-Markovian and (7) can be
rewritten as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σηt

2 · ϵθ(xt, t) + σηtϵt,

(8)

where ϵt is standard Gaussian noise, the first term on the
right-hand side is the predicted x0 at timestep t scaled by√
ᾱt−1, and the magnitude σηt

of noise ϵt controls how
stochastic the diffusion process is.

2.3. Conditional Diffusion Models

For conditional generation tasks given the condition y,
the goal is to sample images from the posterior distribution
p(x|y). In the work of Song et al. [53], (3) can be rewrit-
ten as follows for conditional generation with the help of
Bayes’ theorem

dx = [f(x, t)−g2(t)∇x(log pt(x)+log pt(y|x))]dt+g(t)dw,
(9)

where the posterior is divided into pt(x) and pt(y|x). In
this way, the unconditional pre-trained diffusion models can
be used for conditional generation with an additional clas-
sifier.

Ho et al. [25] introduced the classifier-free diffusion
guidance with sθ(x, t,y) = ∇x log pt(x|y) the image-
conditional diffusion models. With the same idea, Saharia
et al. [48, 49] trained image-conditional diffusion models
for SR and image-to-image translation in concurrent work.
Nichol et al. [40] proposed to use text-guided diffusion
models to generate photo-realistic images with classifier-
free guidance. The hyperparameter λ in (1) can be inter-
preted as the guidance scale in classifier-free diffusion mod-
els.

While the above methods need to train a diffusion model
from scratch, conditional generation can also be done with
unconditional pre-trained diffusion models [7, 8, 32, 38].
Given (9), we can first update with one unconditional re-
verse diffusion step and then incorporate the conditional in-
formation.

3. Proposed Method
We adopt the HQS algorithm to decouple the data term

and prior term in (1). This decoupling enables us to solve
the decoupled subproblems iteratively and thus facilitates
the utilization of diffusion sampling framework [57]. By
introducing an auxiliary variable z, (1) can be split into the
following subproblems and be solved iteratively,

zk = argmin
z

1

2(
√
λ/µ)2

∥z− xk∥2 + P(z) (10a)

xk−1 = argmin
x

∥y −H(x)∥2 + µσ2
n∥x− zk∥2, (10b)

3



… …xT xt x(t)

0 x̂(t)

0 xt-1 x0

Figure 2. Illustration of our sampling method. For every state xt, following the prediction of the estimated x(t)
0 by the diffusion model,

the measurement y is incorporated by solving the data proximal subproblem (indicated by the red arrow). Subsequently, the next state
xt−1 is derived by adding noise back and thus completing one step of reverse diffusion sampling.

where the parameter µ is introduced as the coefficient for
the data-consistent constraint term. Here the subproblem
(10a) associated with prior term is a Gaussian denoising
problem, and the subproblem (10b) associated with the data
term is indeed a proximal operator [42] which usually has a
closed-form solution.

Our goal is to solve inverse problems via posterior sam-
pling with generative diffusion models. Just like most plug-
and-play methods, we can decouple the data term and prior
term [57]. The prior term ensures the generated sample
is from the prior data distribution, and the data term nar-
rows down the image manifold with the given measurement
y [7]. We introduce them first in Section 3.1 and Sec-
tion 3.2, then our proposed sampling method in Section 3.3.
In Section 3.4, we highlight the differences between Diff-
PIR and several closely related diffusion-based methods. In
Section 3.5, we show that our sampling can be accelerated
like DDIM.

3.1. Diffusion Models as Generative Denoiser Prior

One important property of diffusion models is that the
models can be understood as a combination of a genera-
tor (for the first few steps) and denoiser (for the rest of the
steps) [13]. Intuitively, we can simply apply diffusion mod-
els as deep prior denoiser in HQS algorithm with a suit-
able initialization for plug-and-play IR [57]. However, one
significant difference between diffusion models and other
deep denoisers is the generative power of diffusion models.
With this generative ability, we will show that our method
is capable of solving especially highly challenging inverse
problems such as image inpainting with large masks.

It would be beneficial to build the connection between
(10a) and the diffusion process. Assume we want to solve

noiseless zk from xt with noise level σ̄t =
√

1−ᾱt

ᾱt
, we can

let
√
λ/µ = σ̄t for convenience. Given the noise schedule

{βt} and hyperparameter λ, σ̄t is known. Indeed, (10a)
can be solved as a proximal operator. Note that we have
∇xP(x) = −∇x log p(x) = −sθ(x), we can rewrite (10a)
immediately as:

zk ≈ xk +
1− ᾱt

ᾱt
sθ(xk), (11)

which means zk is the estimated clear image x(t)

0 in “Vari-
ance Exploding (VE)” SDE form. Since the VP and VE
Diffusion Models are actually equivalent to each other [32],
from now on we limit our discussion within DDPM without
loss of generality. To make the discussion more clear, we
rewrite (10) as

x(t)

0 = argmin
z

1

2σ̄2
t

∥z− xt∥2 + P(z) (12a)

x̂(t)

0 = argmin
x

∥y −H(x)∥2 + ρt∥x− x(t)

0 ∥2 (12b)

xt−1 ←− x̂(t)

0 , (12c)

where ρt = λ(σn/σ̄t)
2. Here (12b) is the data subproblem

to solve and (12c) is a necessary step to finish our sampling
method which will be introduced in 3.3. Additionally, we
show in Appendix A.1 that we can also derive one-step re-
verse diffusion from HQS.

Algorithm 1 DiffPIR

Require: sθ, T , y, σn, {σ̄t}Tt=1, ζ, λ
1: Initialize xT ∼ N (0, I), pre-calculate ρt ≜ λσ2

n/σ̄
2
t .

2: for t = T to 1 do
3: x(t)

0 = 1√
ᾱt
(xt + (1 − ᾱt)sθ(xt, t)) // Predict ẑ0

with score model as denoisor
4: x̂(t)

0 = argminx ∥y − H(x)∥2 + ρt∥x − x(t)

0 ∥2 //
Solving data proximal subproblem

5: ϵ̂ = 1√
1−ᾱt

(xt −
√
ᾱtx̂

(t)

0 ) // Calculate effective
ϵ̂(xt,y)

6: ϵt ∼ N (0, I)
7: xt−1 =

√
ᾱt−1x̂

(t)

0 +
√
1− ᾱt−1(

√
1− ζϵ̂+

√
ζϵt)

// Finish one step reverse diffusion sampling
8: end for
9: return x0

3.2. Analytic Solution to Data Subproblem

For IR tasks such as image deblurring, image inpainting
and SR, we have a fast solution of (12b) based on the esti-
mated z0 on the image manifold [57]. Since the data and
prior terms are decoupled, the degradation model according
to which we get the measurement y is only related to (12b).
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FFHQ Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓

DiffPIR 100 27.36 59.65 0.236 26.57 65.78 0.255 26.64 65.77 0.260

DPS [8] 1000 25.46 65.57 0.247 23.31 73.31 0.289 25.77 67.01 0.256
DDRM [32] 20 25.93 101.89 0.298 - - - 27.92 89.43 0.265
DPIR [57] >20 27.79 123.99 0.450 26.41 146.44 0.467 28.03 133.39 0.456

ImageNet Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
DiffPIR 100 22.80 93.36 0.355 24.01 124.63 0.366 23.18 106.32 0.371

DPS [8] 1000 19.58 138.80 0.434 17.75 184.45 0.491 22.16 114.93 0.383
DDRM [32] 20 22.33 160.73 0.427 - - - 23.89 118.55 0.358
DPIR [57] >20 23.86 189.92 0.476 23.60 210.31 0.489 23.99 204.83 0.475

Table 1. Noisy quantitative results on FFHQ (top) and ImageNet (bottom). We compute the average PSNR (dB), FID and LPIPS of
different methods on Gaussian deblurring, motion deblurring and 4× SR.

In cases where an analytical solution to (12b) is not avail-
able, we can still approximate its solution using a first-order
proximal operator method as follows:

x̂(t)

0 ≈ x(t)

0 −
σ̄2
t

2λσ2
n

∇
x
(t)
0

∥y −H(x(t)

0 )∥2. (13)

This approximation can also be considered as one step of
gradient descent, and we can calculate it numerically.

3.3. DiffPIR Sampling

With the discussion in the above two subsections, we can
get an estimation of x̂(t)

0 (y) given its noisy version xt after
calculating the analytical solution. However, this estima-
tion is not accurate, and we can add noise back to noise
level t− 1 as in (12c). This estimation-correction idea was
proposed in both [51] and [30]. In the DDIM fashion, we
can first consider the estimation x̂(t)

0 (y) as a sample from the
conditional distribution p(x|y). Then we can calculate the
effective predicted noise ϵ̂(xt,y) =

1√
1−ᾱt

(xt −
√
ᾱtx̂

(t)

0 )

to get the final one-step sampling expression similar to (8)

xt−1 =
√
ᾱt−1x̂

(t)

0 (y)+
√
1− ᾱt−1 − σ2

ηt
ϵ̂(xt,y)+σηtϵt,

(14)
where ϵ̂ is the corrected version of predicted noise and ϵt ∼
N (0, I). In our case, we found that the noise term σηtϵt
may not be strong enough and we can set σηt

= 0.
Instead, we use a hyperparameter ζ to introduce noise to

balance ϵt and ϵ̂ and the explicit form of (12c) becomes

xt−1 =
√
ᾱt−1x̂

(t)

0 +
√
1− ᾱt−1(

√
1− ζϵ̂+

√
ζϵt), (15)

where the hyperparameter ζ controls the variance of the
noise injected in each step and our sampling strategy be-
comes deterministic when ζ = 0.

Based on the above discussion, we summarized the de-
tailed algorithm of our method, namely DiffPIR, in Algo-
rithm 1. Our sampling method is demonstrated in Figure
2. It is worth to mention that estimation of x̂(t)

0 (xt, y) and
the correction of ϵ̂(xt, y) involve the implicit computation
of the conditional score sθ(xt, y).

3.4. Comparison to Related Works

In this section, we will discuss the differences between
the proposed DiffPIR and several closely related diffusion-
based methods.

DDRM [51]. In DDRM, Kawar et al. introduced variational
distribution of variables in the spectral space of general lin-
ear operatorH. It is worth noting that DDRM is structurally
similar to our method, as both first predict x0 and then add
noise to forward sample xt−1. However, DDRM can only
work for linear operatorH, and its efficiency is not guaran-
teed when fast SVD is not feasible. On the contrary, Diff-
PIR can handle arbitrary degradation operatorH with (13).

DPS [8]. In DPS, Chung et al. used Laplacian approxima-
tion to circumvent the intractability of posterior sampling,
and their method can solve general noisy inverse problems.
However, DPS suffers from its sampling speed and its re-
construction is not faithful with few sampling steps. More-
over, while DPS and DiffPIR have a similar solution for
general inverse problems, just like the other posterior sam-
pling methods with diffusion models (i.e., [7,8,38] and sam-
pling methods in Appendix A.2), it handles the measure-
ment after each reverse diffusion step. In contrast, DiffPIR
adds measurement within reverse diffusion steps based on
DDIM, which supports fast sampling.
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measurement DPS(1000)DDRM(20) DDRM(100) DMIR(100)DMIR(20) Ground TruthDPS(100)

Measurement DDRM (20) DDRM (100) DPS (100) DPS (1000) DiffPIR (20) DiffPIR (100) Ground Truth

Figure 3. Qualitative results of 4× SR. We compare DiffPIR, DPS and DDRM with σn = 0.05measurement DPS(1000)DPIR DMIR(100)DMIR(20) Ground TruthDPS(100)

Measurement DPIR (20) DPS (100) DPS (1000) DiffPIR (20) DiffPIR (100) Ground Truth

Figure 4. Qualitative results of motion deblurring. We compare DiffPIR, DPS and DPIR with σn = 0.05

3.5. Accelerated Generation Process

While the generative ability of diffusion models has been
proven to be better than other generative models like GAN
and VAE, their slow inference speed (∼ 1000 Neural Func-
tion Evaluations (NFEs)) impedes them from being applied
in many real-world applications [56]. As suggested in [51],
DDPMs can be generalized to DDIMs with non-Markovian
diffusion processes while still maintaining the same training
objective. The underline reason is that the denoising objec-
tive (4) does not depend on any specific forward procedure
as long as p0t(xt | x0) is fixed. As a result, our sampling
sequence (length T ) can be a subset of [1, ..., N ] used in
training. To be specific, we adapt the quadratic sequence in
DDIM, which has more sampling steps at low-noise regions
and provides better reconstructions in our experiment [51].

4. Experiments
4.1. Implementation Details

We performed extensive experiments on the FFHQ
256×256 [31] and ImageNet 256×256 [46] datasets to eval-
uate different methods. For each dataset, we evaluate 100
hold-out validation images. As our method is training-free,
we use pre-trained models from [14] and [7] to conduct
experiments on the ImageNet and FFHQ datasets, respec-
tively. Throughout all experiments, we use the same linear

noise schedule {βt}while employing different sampling se-
quences for each method. Additionally, we keep all other
settings of the diffusion models unchanged.

The degradation models are specified as follows: (i) For
inpainting with box-type mask, the mask is 128×128 box
region following the approach outlined in [8]; for inpaint-
ing with random-type mask, we mask out half of the to-
tal pixels at random; for inpainting with prepared mask im-
ages, we load the masks used in [38]. (ii) When applying
Gaussian blur, we utilize a blur kernel of size 61×61 and
a standard deviation of 3.0; for motion blur, the blur kernel
is randomly generated with a size of 61×61 and intensity
value of 0.5 following the methodology described in [8]. To
make a fair comparison, we use the same motion blur ker-
nel for all experiments. (iii) For SR, bicubic downsampling
is performed. For image inpainting, we only consider the
noiseless case. For image deblurring and SR, we do exper-
iments with both noisy and noiseless settings. All images
are normalized to the range of [0, 1]. For additional experi-
mental details, including parameter settings, please refer to
Appendix B.

4.2. Quantitative Experiments

For quantitative experiments, the metrics we used
for comparison are Peak Signal-to-Noise Ratio (PSNR),
Fréchet Inception Distance (FID), and Learned Perceptual
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FFHQ Inpaint (box) Inpaint (random) Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
DiffPIR 20 35.72 0.117 34.03 30.81 0.116 30.74 46.64 0.170 37.03 20.11 0.084 29.17 58.02 0.187
DiffPIR 100 25.64 0.107 36.17 13.68 0.066 31.00 39.27 0.152 37.53 11.54 0.064 29.52 47.80 0.174

DPS [8] 1000 43.49 0.145 34.65 33.14 0.105 27.31 51.23 0.192 26.73 58.63 0.222 27.64 59.06 0.209
DDRM [32] 20 37.05 0.119 31.83 56.60 0.164 28.40 67.99 0.238 - - - 30.09 68.59 0.188
DPIR [57] >20 - - - - - 30.52 96.16 0.350 38.39 27.55 0.233 30.41 96.16 0.362

Table 2. Noiseless quantitative results on FFHQ. We compute the average PSNR (dB), FID and LPIPS of different methods on inpainting,
deblurring, and SR.

Measurement Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Ground Truth

Figure 5. Qualitative results of inpainting. We demonstrate the ability of DiffPIR to generate diverse reconstructions for different masks.

Image Patch Similarity (LPIPS) distance. The FID evalu-
ates the visual quality and distance between two image dis-
tributions. PSNR measures the faithfulness of restoration
between two images, which is not important but necessary
for IR tasks. LPIPS measures the perceptual similarity be-
tween two images. We report the results for both FFHQ
256×256 and ImageNet 256×256 datasets.

We compare DiffPIR (with 20 and 100 NFEs) with
diffusion-based methods including DDRM [32] and DPS
[8], and plug-and-play method DPIR [57]. The sampling
steps for DDRM and DPS are 20 and 1000 according to the
original paper. It is worth noting that since DPIR involves
different iteration numbers for different tasks, we reported
the minimum required number in the results. To ensure fair-
ness, we employed the same pre-trained diffusion models
and blur kernels for all methods in the comparison.

For noisy measurements with σn = 0.05, we evaluate
all methods on both datasets for 4× super-resolution (SR),
Gaussian deblurring, and motion deblurring. However,
we exclude DDRM from the motion deblurring evaluation
since DDRM solely supports separable kernels for image
deblurring. Table 1 demonstrates that DiffPIR achieves su-
perior performance compared to all other comparison meth-

ods in terms of FID and LPIPS on both datasets. Addition-
ally, DiffPIR achieves competitive scores in terms of PSNR.
The only exception is observed in the LPIPS score for SR,
which can be attributed to the potential introduction of ac-
cumulated errors during the sampling process due to the in-
accuracy of the approximated bicubic kernels k.

For noiseless measurement with σn = 0.0, we evalu-
ate all methods on FFHQ 256×256 for image inpainting,
deblurring, and SR. DPIR is excluded from the inpainting
experiments since it lacks initialization support for arbitrary
masks. The quantitative results are summarized in Table 2.
For noiseless cases, our method with 100 NFEs outper-
forms the other comparison methods significantly in FID
and LPIPS. Although DPIR exhibits a greater advantage in
terms of PSNR for noiseless tasks, the generated images of-
ten fail to present high perceptual quality. Remarkably, even
with just 20 NFEs, DiffPIR showcases impressive competi-
tive FID and LPIPS scores.

4.3. Qualitative Experiments

DiffPIR is able to produce high-quality reconstructions,
as shown in Figure 1 and Appendix D. In Figure 3, we com-
pare DiffPIR with DPS and DDRM on 4× SR. In Figure 4,
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we compare DiffPIR with DPS and DPIR on motion de-
blurring. Our findings reveal that unlike DDRM and DPIR,
which have a tendency to generate blurry images, DiffPIR
excels in reconstructing images with intricate details. More-
over, compared to DPS, DiffPIR needs much fewer NFEs to
get faithful reconstruction.

Furthermore, our sampling method has the ability to
generate diverse reconstructions similar to DDPM. With
examples from image inpainting (see Figure 5) we show
that DiffPIR can generate high-quality reconstruction with
both diversity and good semantic alignment even when the
degradation is strong (75% masked).

4.4. Ablation Study

101 102 103

26.4

26.8

0.26

0.32

NFEs

PS
N

R
/d

B

L
PI

PS

Figure 6. Effect of sampling steps/NFEs

Effect of sampling steps. To investigate the effect of
sampling steps or equivalently the number of NFEs, we
perform 4× noisy SR (σn=0.05) experiment on 100 im-
ages from ImageNet validation set for sampling steps T ∈
[10, 15, 20, 50, 100, 200, 500, 1000]. Hyperparameters are
fixed as λ=8.0 and ζ=0.3, respectively. It is evident from
Figure 6 that while the PSNR is log-linear to the number of
NFEs, the LPIPS score is lowest for T ∈ [100, 500]. Con-
sequently, DiffPIR can produce detailed images with fewer
than 100 NFEs and the default number of NFEs is set to 100
in this paper.

Effect of tstart. Similar to [9], our methods can also start
the reverse diffusion process from a partial noised image
rather than pure Gaussian noise to reduce the number of
NFEs, especially for tasks like deblurring and SR. To an-
alyze the impact of skipping the initial diffusion steps on
the ability to perform IR, we show in Figure 7 how PSNR
and LPIPS change with the tstart for noisy Gaussian de-
blurring task. Hyperparameters are fixed as λ = 8.0 and
ζ = 0.5. We find that our method performs well for even
tstart = 400, which leads to a great reduction of NFEs
without loss of quality (see Appendix C for further ex-
planation). We also provide images for comparison with
tstart = 200 and tstart = 400.

Effects of λ and ζ. DiffPIR has two hyperparameters λ
and ζ, which control the strength of the condition guidance

26.0

27.4 0.32

1000/100 200/36400/64

0.24

tstart/NFEs

tstart = 400 tstart = 200

PS
N

R
/d

B

L
PI
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Figure 7. Effect of tstart

λ

ζ

0.1 1.0 10 100 1000 10000

1.0

0.8
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Figure 8. Effect of hyperparameters ζ and λ

and the level of noise injected at each sampling timestep.
To illustrate their effects, we show the reconstructed images
of a motion-blurred sample in Figure 8. Our observations
from these results are as follows: (i) when the guidance is
too strong (e.g., λ < 1.0) the noise is amplified whereas
when the guidance is too weak (e.g., λ > 1000), the gener-
ated images become more unconditional; (ii) the generated
images tend to be blurry when ζ approaches 1.

5. Conclusions
In this paper, we introduce a new diffusion model-based

sampling technique for plug-and-play image restoration,
referred to as DiffPIR. Specifically, DiffPIR employs an
HQS-based diffusion sampling approach that utilizes off-
the-shelf diffusion models as plug-and-play denoising prior
and solves the data subproblem in the clean image manifold.
Extensive experimental results highlight the superior flexi-
bility, efficiency, and generalizability of DiffPIR in compar-
ison to other competitive methods.
Acknowledgements: This work was partly supported by
the ETH Zürich General Fund (OK), the Alexander von
Humboldt Foundation and the Huawei Fund.
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Appendix

A. Other HQS-based Sampling Methods
A.1. HQS as one diffusion step

For each of the conditional reverse diffusion step t, we
are actually solving the MAP estimation problem on noise
level βt:

x̂t = argmin
xt

1

2σ2
n

∥y −H(xt)∥2 + λP(zt)

s.t. xt = zt =
√
1− βtzt−1 +

√
βtϵ

(16)

With the HQS trick, now we have to solve
x̂t = argmin

xt

∥y −H(xt)∥2 + µσ2
n∥xt − ẑt∥2 (17a)

ẑt = argmin
zt

1

2(
√

λ/µ)2
∥zt − x̂t∥2 + P(zt) (17b)

for each reverse diffusion step. We define σt =
√

λ/µ
where σt is the relative noise level between xt and zt with
σt =

√
βt

1−βt
.

To build the connection between (17b) and a reverse dif-
fusion step (7), we first rewrite (17b) as

ẑt−1 =argmin
zt−1

1

2( βt

1−βt
)
∥
√
1− βtzt−1 +

√
βtϵ− x̂t∥2

+P(
√

1− βtzt−1 +
√
βtϵ).

(18)
Note that we have∇xP(x) = −∇x log p(x) = −sθ(x).

For any ϵ0 sampled from N (0, I), we have√
1− βtẑt−1 +

√
βtϵ0 ≈ x̂t +

βt

1− βt
sθ(x̂t, t) (19)

minimize the RHS of (18) as first-order approximation of
the proximal operator, which is also a standard gradient step
with step length βt

1−βt
. Then ẑt−1 can be solved as:

ẑt−1 =
1√

1− βt
(x̂t + (βt + o(βt))sθ(x̂t, t))

+
√
βt(1 + o(βt))ϵ

′
0

≈ 1
√
αt

(x̂t + βtsθ(x̂t, t)) +
√
βtϵ

′
0

(20)

where ϵ′0 = −ϵ0 is also a sample from N (0, I) and (20) is
the same as reverse process of DDPM (7).

A.2. DPS as a Special Case

For (17a), we can write similarly to Section 3.2:

x̂t ≈ ẑt −
σ2
t

2λσ2
n

∇zt
∥y −H(zt)∥2 (21)

With the Theorem 1 from DPS [8]

∇xt
log pt(y|xt) ≃ ∇xt

log p(y|x̂0) (22)

(21) turned into:

x̂t ≈ ẑt −
σ2
t

2λσ2
n

∇zt
∥y −H(z0)∥2 (23)

By setting ζt =
σ2
t

2λσ2
n
= 1

2ρt
, we are now able to reproduce

the sampling strategy in DPS.
Moreover, we can use the conclusion from [53] that

∇xt log pt(xt | y) ≈ ∇xt log pt(xt)+∇xt log pt(yt | xt),

where yt =
√
ᾱty+

√
1− ᾱtϵ is the measurement y at the

given noise level and yt is assumed to be the measurement
from xt.

As a result, we can write a variant of (23) as

x̂t ≈ ẑt −
σ2
t

2λσ2
n

∇zt
∥yt −H(zt)∥2 (24)

To distinguish them, we call the original DPS as DPSy0 and
the algorithm with (24) as DPSyt. The algorithm of DPSyt
is:

Algorithm 2 Extended Sampling I: DPSyt
Require: sθ , T , y, σn, {σt}Tt=1, λ

1: Initialize xT ∼ N (0, I)
2: for t = T to 1 do
3: ϵt ∼ N (0, I)

4: zt−1 = 1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
+

√
βtϵt // one step

reverse diffusion sampling
5: xt−1 = zt−1− σ2

t
2λσ2

n
∇zt−1∥yt−1−H(zt−1)∥2 // Solving

data proximal subproblem
6: end for
7: return x0

B. Experimental Details

B.1. Hyperparameters Values

We list the hyperparametrs values for different tasks and
datasets in 3.

NFE=20 σy = 0.05 σy = 0.0

Dataset FFHQ 256x256 ImgaeNet 256x256 FFHQ 256x256

Hyperparameters λ ζ λ ζ λ ζ

Inpaint (box) - - - - 6.0 1.0
Inpaint (random) - - - - 3.0 1.0
Deblur (gauss) 8.0 0.5 12.0 0.9 15.0 0.5
Deblur (motion) 7.0 0.8 7.0 1.0 25.0 1.0
SR (×4) 8.0 0.4 10.0 0.5 9.0 0.2
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NFE=100 σy = 0.05 σy = 0.0

Dataset FFHQ 256x256 ImgaeNet 256x256 FFHQ 256x256

Hyperparameters λ ζ λ ζ λ ζ

Inpaint (box) - - - - 6.0 0.5
Inpaint (random) - - - - 7.0 1.0
Deblur (gauss) 7.0 0.3 8.0 0.3 12.0 0.4
Deblur (motion) 7.0 0.4 8.0 0.7 7.0 0.9
SR (×4) 8.0 0.2 9.0 0.5 6.0 0.3

Table 3. Hyperparameters for different tasks.

B.2. Closed-form Solutions

In this section, we will introduce the specific degrada-
tion models and fast solutions of (12b) for image restoration
tasks including SR, deblurring and inpainting.

Image Inpainting. In this work, we only consider the
noiseless inpainting. The degradation model of masked im-
age for inpainting can be expressed as

y = M⊙ x, (25)

where M is any user-defined mask and is a matrix with
boolean elements, and ⊙ denotes element-wise multiplica-
tion. The image inpainting task is to recover the missing
pixels from the known pixels as y. The closed-from solu-
tion of (12b) is given by [57]

x0 =
M⊙ y + ρtz0

M+ ρt
, (26)

and the division here is also element-wise.

Image Deblurring. The linear degradation model for im-
age deblurring with Gaussian noise is generally expressed
as

y = x⊗ k+ n, (27)

where ⊗ is two-dimensional convolution operator applied
on all image channels. By assuming⊗ is also a circular con-
volution operator, the analytical solution of (12b) is given
by [57]

x0 = F−1

(
F(k)F(y) + ρtF(z0)
F(k)F(k) + ρt

)
, (28)

where the F(·) and F−1(·) denote Fast Fourier Transform
(FFT) and its inverse.

Single Image Super-Resolution (SISR). In this work, we
consider bicubic SR, which has the following degradation
model

y = x ↓bicubicsf +n, (29)

where ↓bicubicsf denotes bicubic downsamling with down-
scaling factor sf .

We can then solve (12b) with the following iterative
back-projection (IBP) solution

x0 = z0 − γ(y − z0 ↓bicubicsf ) ↑bicubicsf , (30)
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Figure 9. Reverse diffusion process in DiffPIR

where ↑bicubicsf denotes bicubic interpolation with upscaling
factor sf , γ is the step size. Through experiment, we found
that it’s better to use γt = γ

1+ρt
which will decrease with

time. To get the solution accurately, we IBP for more than
one iteration for each timestep t.

For bicubic SR, we can also solve (12b) in closed-form
with an approximated bicubic kernels k [57]

x0 = F−1

(
1

ρt

(
d−F(k)⊙s

(F(k)d) ⇓s
(F(k)F(k)) ⇓s +ρt

))
,

(31)
where d = F(k)F(y ↑sf ) + ρtF(z0) and ↑sf denotes
the standard s-fold upsampler, and where ⊙s denotes dis-
tinct block processing operator with element-wise multipli-
cation, ⇓s denotes distinct block downsampler, i.e., averag-
ing the s× s distinct blocks.

In general, the closed-form solution (31) should outper-
form iterative solutions (30) in quantitative metrics, since
the former contains fewer hyperparameters.

C. Additional Ablation Study
In this section, we illustrate the reverse diffusion process

by showing the intermediate results in Figure 9. We ob-
served that in the beginning, the analytical solution offers
no help and motivate us to skip this phase. As mentioned in
Section 4.4, we found by experiment tstart the end timestep
for this phase.

D. Additional Visual Results
In this section, we provide additional visual examples

for FFHQ and ImageNet datasets to show the ability of
our method. In Figure 10 we demonstrate that DPSyt and
DPSy0 both work well on IR tasks like deblurring and SR.
In Figure 11, we show the diversity of SR reconstructions
with diffusion model as generative prior. In Figure 12 and
13, we show that our proposed DiffPIR is capable to handle
various blur kernels (both motion and Gaussian) and masks,
respectively.
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Measurement DPSyt DPSy0 Measurement DPSyt DPSy0 Ground Truth

Figure 10. Qualitative results of DPSyt and DPSy0 (both 1000 NFEs) for Gaussian deblurring (left) and 4× SR (right) with σn = 0.05
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Figure 11. Qualitative results of DiffPIR (100 NFEs) for 8× and 16× SR with σn = 0.0 and σn = 0.05.
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Measurement DiffPIR Ground Truth Measurement DiffPIR Ground Truth

Figure 12. Qualitative results of DiffPIR (100 NFEs) for motion deblurring (left) and Gaussian deblurring (right) with σn = 0.05
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Measurement Sample 1 Sample 2 Measurement Sample 3 Ground Truth

Figure 13. Qualitative results of DiffPIR (100 NFEs) for inpainting with different masks (σn = 0.0)
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