One-step Diffusion Models with Bregman Density Ratio Matching

Yuanzhi Zhu*¹ Eleftherios Tsonis*¹ Lucas Degeorge*^{1,2,3} Vicky Kalogeiton¹
¹LIX, École Polytechnique, CNRS, IPP ²LIGM, École Nationale des Ponts et Chaussées, CNRS, IPP ³AMIAD

Abstract

Diffusion and flow models achieve high generative quality but remain computationally expensive due to slow multi-step sampling. Distillation methods accelerate them by training fast student generators, yet most existing objectives lack a unified theoretical foundation. In this work, we propose Di-Bregman, a compact framework that formulates diffusion distillation as Bregman divergence-based density-ratio matching. This convex-analytic view connects several existing objectives through a common lens. Experiments on CIFAR-10 and text-to-image generation demonstrate that Di-Bregman achieves improved one-step FID over reverse-KL distillation and maintains high visual fidelity compared to the teacher model. Our results highlight Bregman density-ratio matching as a practical and theoretically-grounded route toward efficient one-step diffusion generation.

1 Introduction

Diffusion and flow models [1, 16, 22, 25, 44, 46, 47] have become a cornerstone of generative modeling, attaining state-of-the-art performance across modalities and tasks [5, 7, 9, 10, 10, 26, 37, 39, 50]. Yet their sampling process remains prohibitively slow, often requiring hundreds of network evaluations per sample. This has motivated an active line of research on distillation: training fast student generators that reproduce a pre-trained teacher's output in one or few steps. Current approaches can be broadly categorized as Ordinary Differential Equation (ODE)-based [13, 23, 41, 45], which learn consistency mappings along the teacher's probability-flow ODE, and distribution-based [28, 59, 65], which directly match the generator's output distribution to that of the teacher or data. ODE-based methods enforce sufficient but unnecessary conditions for one-step generation, whereas distribution-based methods relax these constraints and capture a broader solution space. Variational Score Distillation (VSD) [52] and Distribution Matching Distillation (DMD) [59] define objectives based on reverse-Kullback-Leibler (KL) divergence between student and teacher models. *f*-distill [55] reframed these methods through the lens of *f*-divergences. Despite this progress, a general perceptive that explains these objectives in a simple mathematical form remains missing.

We introduce Di-Bregman, a general framework that formulates diffusion distillation as Bregman divergence-based density-ratio matching [32]. The central insight is that aligning the student distribution q(x) with the teacher p(x) can be viewed as driving the ratio $r(x) = \frac{q(x)}{p(x)}$ toward constant one, under a suitable convex function h. This perspective yields a closed-form gradient (Theorem 3.1) with weighting h''(r)r. Under this formulation, familiar objectives, such as KL- or MSE-based distillation arise as specific choices of h. The result is a concise, interpretable expression that connects multiple existing formulations within a single theoretical framework.

Beyond theory, Di-Bregman remains practical. To get the weightning coefficient h''(r)r, we estimate density ratios through a simple classifier trained to distinguish student samples from real data, enabling efficient training without repeated teacher simulation and allowing optional adversarial

^{*}share the same office

refinement. Preliminary results on both unconditional image and text-to-image generation demonstrate that our approach attains improved one-step FID than reverse-KL distillation and maintains visual fidelity comparable to the multi-step teacher models.

In summary, our contributions are:

- We introduce a unified formulation of diffusion distillation based on Bregman density-ratio matching, which yields a closed-form gradient interpretation,
- We propose a practical classifier-based training procedure that effectively instantiates this
 formulation and validate it on early benchmarks.

2 Preliminaries

2.1 Variational Score Distillation

Variational Score Distillation (VSD) [52] was introduced to mitigate mode-seeking and oversaturation ² issues observed when using Score Distillation Sampling (SDS) for 3D asset generation [38]. Importantly, the VSD objective is defined on the *final* samples produced by a generator, rather than on intermediate sampler states. This final-sample focus naturally motivates efforts to distil powerful multi-step pre-trained model into compact few-step or one-step generators via VSD-style objectives; several recent works have followed this route [28, 33, 59].

Concretely, VSD can be viewed as minimizing a time-averaged divergence between the noisy marginal produced by the student generator and the corresponding noisy marginal of a pretrained reference model. Writing q_t and p_t for the generator and reference noisy marginals at time t, respectively, the gradient of a typical score-distillation loss admits the following approximation:

$$\nabla_{\theta} \mathcal{L}_{\text{VSD}} = \mathbb{E}_{t} \left[\nabla_{\theta} \text{KL}(q_{t} \parallel p_{t}) \right] \approx -\mathbb{E}_{t,\epsilon} \left[w(t) \left(s_{\phi}(x_{t}, t) - s_{\psi}(x_{t}, t) \right) \frac{dG_{\theta}(\epsilon)}{d\theta} \right], \tag{1}$$

where w(t) is a scalar weighting function over timesteps, and the noisy state x_t is obtained by applying the forward diffusion kernel at time t to the generator output $G_{\theta}(\epsilon)$ using another independent Gaussian noise. $s_{\phi}(\cdot,t)$ and $s_{\psi}(\cdot,t)$ denote the pre-trained score function on reference data and the auxiliary score function on the student-generated data evaluated at timestep t, respectively. Intuitively, the score difference $s_{\phi} - s_{\psi}$ provides a learning signal that pushes the student's generated noisy marginals toward those of the pre-trained teacher model, and backpropagating through G_{θ} to update the generator parameters θ .

2.2 Bregman Divergence for Density Ratio Matching

Given two probability distributions $p^*(x)$ and $q^*(x)$, the goal of *density ratio matching* is to learn a ratio model $r_{\theta}(x)$ that approximates the true density ratio $r^*(x) \coloneqq \frac{q^*(x)}{p^*(x)}$ based on i.i.d. samples drawn from both distributions.

The *Bregman divergence* provides a flexible and theoretically grounded measure for comparing functions such as density ratios. It generalizes the notion of squared Euclidean distance to a broad class of divergences that share similar geometric and convexity properties [2, 49]. Let h be a differentiable and strictly convex function. The Bregman divergence associated with h between two functions r and r^* is defined as [19, 49]:

$$D_h(r||r^*) = \int p(x) \Big[h(r(x)) - h(r^*(x)) - h'(r^*(x))(r(x) - r^*(x)) \Big] dx.$$
 (2)

This divergence is positive-definite, which means it is always non-negative and equals zero if and only if $r(x) = r^*(x)$ almost everywhere with respect to p(x), which is the density implicitly defined in r(x). Many well-known divergences arise as special cases of the Bregman divergence for specific choices of the convex function h. For instance, the *squared loss* corresponds to $h(r) = \frac{1}{2}r^2$, leading

²The SDS objective tends to produce solutions corresponding to the mode of the averaged likelihood, leading to mode-seeking behavior. Moreover, a high Classifier Free Guidance (CFG) scale can cause over-saturated and over-smoothed generation results.

to least-squares density ratio estimation [48] and the *KL divergence* corresponds to $h(r) = r \log r - r$. More instances can be found in Sec. 2.2. This unifying framework allows density ratio estimation to be interpreted as minimizing a Bregman divergence under different convex function h, providing a general connection between statistical divergences and convex analysis [2, 6].

Table 1: Examples of different h(r) in Bregman divergence and the corresponding h''(r)r. The choices of h(r) are from [19, 34].

Name	h(r)	h''(r)r	$h^{\prime\prime}(e^{-l})e^{-l}$
LR	$r\log r - (1+r)\log(1+r)$	$\frac{1}{1+r}$	$\sigma(l)$
KL	$r \log r - r$	1	1
BE	$-\log r$	1/r	e^l
LS	$r^2/2$	r	e^{-l}
SBA	$\frac{r^{1+\lambda}-r}{\lambda(\lambda+1)}$	r^{λ}	$e^{-\lambda l}$

3 Method

In this section, we introduce a general distillation framework, termed Di-Bregman, which is derived from the Bregman divergence for density ratio matching formulation in Sec. 2.2. The core idea is to align the student distribution q(x), induced by a one-step generator G_{θ} , with the teacher distribution p(x). Since the student distribution q(x) is implicitly defined by the generator through the pushforward measure of the prior, i.e., $x = G_{\theta}(\epsilon)$ with $\epsilon \sim \mathcal{N}(0, I)$, the distribution q(x) and its density ratio depend on the generator parameters θ . Let $r(x) = \frac{q(x)}{p(x)}$ denote the density ratio between the student and teacher distributions. Perfect alignment hence corresponds to r(x) = 1 for all x, which motivates minimizing a divergence between r(x) and the target ratio 1 in Eq. (2):

$$D_h(r||1) = \int p(x) \Big[h(r(x)) - h(1) - h'(1)(r(x) - 1) \Big] dx.$$
 (3)

Minimizing this divergence with respect to θ encourages the student generator G_{θ} to produce samples whose induced distribution q(x) matches the teacher distribution p(x).

Following prior work on one-step and few-step distillation of diffusion models [28, 33, 59], we can derive the analytical form of the gradient of the Bregman divergence in Eq. (3). The resulting expression corresponds to a weighted variant of the gradient used in the KL-based objective (Eq. (1)), where the weight is a function of the density ratio r(x), analogous to the formulation in f-distill [55].

To further generalize this result as in VSD, we consider the intermediate distributions p_t and q_t obtained via the diffusion forward process. This allows the Bregman-based distillation gradient to be evaluated at arbitrary diffusion timesteps. The following theorem formally characterizes the gradient of the Bregman divergence in this general setting.

Theorem 3.1 (Gradient of Bregman divergence). Let p_t be a reference (teacher) marginal density at time t and let $q_t = q_{\theta,t}$ be the marginal induced by the generator G_{θ} at time t. These intermediate densities are obtained via the forward diffusion process. Define the intermediate density ratio $r_t(x) := \frac{q_{\theta,t}(x)}{p_t(x)}$. Assume that h is twice continuously differentiable. Then the gradient of the Bregman divergence $D_h(r_t||1) = \mathbb{E}_{p_t}[h(r_t)] - h(1)$ with respect to θ admits the following form:

$$\nabla_{\theta} D_h(r_t \| 1) = -\mathbb{E}_{\epsilon} \left[w(t) h''(r_t(x_t)) r_t(x_t) \left(\nabla_{x_t} \log p_t(x_t) - \nabla_x \log q_{\theta,t}(x_t) \right) \nabla_{\theta} G_{\theta}(\epsilon) \right], \quad (4)$$

where w(t) is a weight function.

The corresponding proof can be found in Appendix B.

In practice, the density ratio on noisy data, $r_t(x) = \frac{q_t(x)}{p_t(x)}$, can be estimated using a classifier trained to distinguish samples from the student generator G_{θ} and those from the teacher model or reference dataset. Under the common assumption that the pre-trained teacher model already captures the data distribution well, it is often both preferable and computationally cheaper to draw real samples

Figure 2: Images generated with only one-step by model trained with Di-Bregman. More images are shown in Appendix E

directly from the dataset rather than repeatedly sampling from the teacher. The discriminator loss is hence:

$$\min_{G_{\theta}} \max_{D_{\eta}} \mathbb{E}_{x_{\text{gt}} \sim p_{\text{data}}, t \sim p_{t_{\text{GAN}}}} [\log D_{\eta}((x_{\text{gt}})_{t}, t)] + \mathbb{E}_{\epsilon \sim \mathcal{N}(0, 1), t \sim p_{t_{\text{GAN}}}} [\log (1 - D_{\eta}(G_{\theta}(\epsilon)_{t}, t))].$$
(5)

For a discriminator output $D_{\eta} = \sigma(l_t(x))$, where $l_t(x)$ denotes the classifier logits at noise level t, the optimal output satisfies $\sigma(l_t^*(x)) = \frac{p_t(x)}{p_t(x) + q_t(x)}$. This implies that the density ratio can be recovered as $r_t(x) = e^{-l_t(x)}$. We provide common used h(r) and corresponding $h''(e^{-l})e^{-l}$ in Sec. 2.2. In this framework, the trained classifier not only provides an estimate of the local density ratio but can also be repurposed as a discriminator for adversarially training the student generator.

Compared to f-distill [55], our framework places fewer constraints on the convex function, which yields greater flexibility in choosing divergence families for distillation. Recently, Uni-Instruct [51] proposes a unifying view that connects integral f-divergences [55, 59] and score-based divergences [29, 65]. However, Di-Bregman is complementary to this line of work: it provides a Bregman-divergence perspective that admits a broader class of function h and recovers many existing objectives as special cases. Together, these formulations offer a more complete picture of distribution-based diffusion distillation.

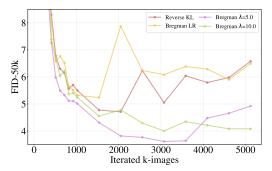


Figure 1: Evolution of one-step FID against number of iterated images: Di-Bregman achieves a lower one-step FID.

4 Experiments

To evaluate the effectiveness of the proposed method, we conduct experiments on both uncon-

ditional image and text-to-image generation tasks. Quantitative results are reported on the CIFAR-10 dataset using an EDM teacher [17], while qualitative results are presented for text-to-image generation with a Stable Diffusion v1.5 [39] teacher. As shown in Fig. 1, when applying the SBA-type Bregman divergence with $\lambda=5$, our method achieves a lower one-step Fréchet Inception Distance (FID) compared to the baseline reverse KL distillation approach. In addition, Fig. 2 illustrates representative one-step samples generated by our distilled text-to-image model, demonstrating high visual quality and fidelity to the text prompts. More experimental details (D), qualitative (E), quantitative (F) results and additional ablations (F) are provided in Appendix.

5 Conclusion

We introduced Di-Bregman, a generalized framework for diffusion model distillation grounded in Bregman divergences. Empirically, our method improves one-step generation quality on CIFAR-10 and produces competitive visual results in text-to-image synthesis, demonstrating both its theoretical generality and practical effectiveness.

Algorithm 1 Di-Bregman Distillation

```
Require: Pre-trained teacher model \phi, auxiliary model \psi, discriminator heads \eta, condition dataset \mathcal{D}_c, ground truth dataset \mathcal{D}_d, loss weights w_{\text{GAN}} (optional)
```

```
1: \theta \leftarrow \text{copyWeights}(\phi), \psi \leftarrow \text{copyWeights}(\phi) // initialize models
 2: repeat
 3:
            ### Generate one-step image samples x_{\theta}
 4:
            Sample \epsilon \sim \mathcal{N}(0,1), c \sim \mathcal{D}_c
 5:
            x_{\theta} = G_{\theta}(\epsilon, c)
 6:
            ### Update generator \theta
 7:
            Sample t \sim \mathcal{U}[0, 1], x_t \sim q_{t|0}(x_t|x_\theta) // Forward
 8:
            Calculate true and auxiliary score s_{\phi}(x_t, c) and s_{\psi}(x_t, c)
 9:
            Calculate the density ratio r_t using discriminator head logit output r_t(x) = e^{-l_t(x)}
10:
            # calculate Di-Bregman loss gradient
           \nabla_{\theta} \mathcal{L}_{\text{Di-Bregman}}(\theta) \longleftarrow -\mathbb{E}_{\epsilon} \left[ h''(r_t(x_t)) \, r_t(x_t) \, \left( s_{\phi}(x_t,c) - s_{\psi}(x_t,c) \right) \nabla_{\theta} G_{\theta}(\epsilon) \right].
# calculate GAN loss (optional)
\mathcal{L}_{\text{GAN}}(\theta) \longleftarrow \mathbb{E}_{\epsilon,t} [-\log(D_{\eta}(x_t,t))].
11:
12:
13:
14:
            # calculate total loss and update
            Update \theta using gradient of \mathcal{L}_{gen}(\theta) = \mathcal{L}_{Di\text{-Bregman}}(\theta) + w_{GAN}\mathcal{L}_{GAN}(\theta)
15:
            ### Update auxiliary model \psi
16:
17:
            Sample t' \sim \mathcal{U}[0, 1], x_{t'} \sim q_{t|0}(x_{t'}|x_{\theta}(x_{\text{init}}, c))
18:
            Update \psi with standard denoising score match loss to learn x_{\theta}
19:
            ### Update discriminator \eta
20:
            Sample t'' \sim \mathcal{U}[0, 0.95], calculate x_{t''} \sim q_{t|0}(x_{t''}|x_{\theta})
21:
            Sample real data (x_{\rm gt},c) \sim \mathcal{D}_d, calculate (x_{\rm gt})_{t''}
22:
            Update \eta with GAN objective (Eq. (5))
23: until convergence
24: Return one-step generator \theta
```

References

- [1] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.
- [2] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with bregman divergences. *Journal of machine learning research*, 6(Oct):1705–1749, 2005.
- [3] Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. How to build a consistency model: Learning flow maps via self-distillation. *arXiv preprint arXiv:2505.18825*, 2025.
- [4] Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching with stochastic interpolants: A mathematical framework for consistency models. *Transactions on Machine Learning Research*, 2025.
- [5] Luc Boudier, Loris Manganelli, Eleftherios Tsonis, Nicolas Dufour, and Vicky Kalogeiton. Training-free synthetic data generation with dual ip-adapter guidance. In *British Machine Vision Conference (BMVC)*, 2025.
- [6] Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. *USSR computational mathematics and mathematical physics*, 7(3):200–217, 1967.
- [7] Robin Courant, Xi Wang, David Loiseaux, Marc Christie, and Vicky Kalogeiton. Pulp motion: Framing-aware multimodal camera and human motion generation. *arXiv* preprint *arXiv*:2510.05097, 2025.
- [8] Trung Dao, Thuan Hoang Nguyen, Thanh Le, Duc Vu, Khoi Nguyen, Cuong Pham, and Anh Tran. Swiftbrush v2: Make your one-step diffusion model better than its teacher. In *European Conference on Computer Vision*, pages 176–192. Springer, 2025.
- [9] Lucas Degeorge, Arijit Ghosh, Nicolas Dufour, David Picard, and Vicky Kalogeiton. How far can we go with imagenet for text-to-image generation? *arXiv*, 2025.
- [10] Nicolas Dufour, Victor Besnier, Vicky Kalogeiton, and David Picard. Don't drop your samples! coherence-aware training benefits conditional diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6264–6273, 2024.
- [11] Nicolas Dufour, Lucas Degeorge, Arijit Ghosh, Vicky Kalogeiton, and David Picard. Miro: Multi-reward conditioned pretraining improves t2i quality and efficiency. *arXiv preprint arXiv:2510.25897*, 2025.
- [12] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut models. *arXiv preprint arXiv:2410.12557*, 2024.
- [13] Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.
- [14] Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free distillation of denoising diffusion models with bootstrapping. In *ICML 2023 Workshop on Structured Probabilistic Inference* {\&} Generative Modeling, 2023.
- [15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
- [16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- [17] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

- [18] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode trajectory of diffusion. *arXiv preprint arXiv:2310.02279*, 2023.
- [19] Yeongmin Kim, Heesun Bae, Byeonghu Na, and Il-Chul Moon. Preference optimization by estimating the ratio of the data distribution. *arXiv preprint arXiv:2505.19601*, 2025.
- [20] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical Report 0, University of Toronto, Toronto, Ontario, 2009.
- [21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13, pages 740–755. Springer, 2014.
- [22] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
- [23] Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv* preprint *arXiv*:2209.14577, 2022.
- [24] Qiang Liu. Icml tutorial on the blessing of flow. *International conference on machine learning*, 2025.
- [25] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
- [26] Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept erasure in diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6430–6440, 2024.
- [27] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.
- [28] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-instruct: A universal approach for transferring knowledge from pre-trained diffusion models. *Advances in Neural Information Processing Systems*, 36:76525–76546, 2023.
- [29] Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion distillation through score implicit matching. *Advances in Neural Information Processing Systems*, 37:115377–115408, 2024.
- [30] Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion distillation through score implicit matching. *Advances in Neural Information Processing Systems*, 37:115377–115408, 2025.
- [31] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On distillation of guided diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14297–14306, 2023.
- [32] Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. *arXiv* preprint arXiv:1610.03483, 2016.
- [33] Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with variational score distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pages 7807–7816, 2024.
- [34] Frank Nielsen and Richard Nock. Sided and symmetrized bregman centroids. IEEE transactions on Information Theory, 55(6):2882–2904, 2009.
- [35] Jean Pachebat, Giovanni Conforti, Alain Durmus, and Yazid Janati. Iterative tilting for diffusion fine-tuning. arXiv preprint arXiv:2512.03234, 2025.

- [36] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in gan evaluation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11410–11420, 2022.
- [37] William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings* of the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.
- [38] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. *arXiv preprint arXiv:2209.14988*, 2022.
- [39] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10684–10695, 2022.
- [40] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. Advances in neural information processing systems, 29, 2016.
- [41] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv* preprint arXiv:2202.00512, 2022.
- [42] Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of diffusion models via moment matching. *Advances in Neural Information Processing Systems*, 37:36046–36070, 2025.
- [43] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. *neurips*, 2022.
- [44] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning*, pages 2256–2265. PMLR, 2015.
- [45] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International conference on machine learning*. PMLR, 2023.
- [46] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in Neural Information Processing Systems*, 32, 2019.
- [47] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2020.
- [48] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, and Motoaki Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. *Advances in Neural Information Processing Systems*, 20, 2008.
- [49] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching under the bregman divergence: a unified framework of density-ratio estimation. *Annals of the Institute of Statistical Mathematics*, 64(5):1009–1044, 2012.
- [50] Xi Wang, Robin Courant, Marc Christie, and Vicky Kalogeiton. Akira: Augmentation kit on rays for optical video generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 2609–2619, 2025.
- [51] Yifei Wang, Weimin Bai, Colin Zhang, Debing Zhang, Weijian Luo, and He Sun. Uni-instruct: One-step diffusion model through unified diffusion divergence instruction. *arXiv preprint arXiv:2505.20755*, 2025.
- [52] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. *Advances in Neural Information Processing Systems*, 36, 2024.

- [53] Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy, Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. arXiv preprint arXiv:2405.16852, 2024.
- [54] Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale text-to-image generation via diffusion gans. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8196–8206, 2024.
- [55] Yilun Xu, Weili Nie, and Arash Vahdat. One-step diffusion models with *f*-divergence distribution matching. *arXiv preprint arXiv:2502.15681*, 2025.
- [56] Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow: Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510, 2024.
- [57] Mingxuan Yi, Zhanxing Zhu, and Song Liu. Monoflow: Rethinking divergence gans via the perspective of wasserstein gradient flows. In *International Conference on Machine Learning*, pages 39984–40000. PMLR, 2023.
- [58] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill Freeman. Improved distribution matching distillation for fast image synthesis. Advances in neural information processing systems, 37:47455–47487, 2024.
- [59] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6613–6623, 2024.
- [60] Mingtian Zhang, Jiajun He, Wenlin Chen, Zijing Ou, José Miguel Hernández-Lobato, Bernhard Schölkopf, and David Barber. Towards training one-step diffusion models without distillation. arXiv preprint arXiv:2502.08005, 2025.
- [61] Haoyang Zheng, Xinyang Liu, Cindy Xiangrui Kong, Nan Jiang, Zheyuan Hu, Weijian Luo, Wei Deng, and Guang Lin. Ultra-fast language generation via discrete diffusion divergence instruct. arXiv preprint arXiv:2509.25035, 2025.
- [62] Mingyuan Zhou, Yi Gu, and Zhendong Wang. Few-step diffusion via score identity distillation. arXiv preprint arXiv:2505.12674, 2025.
- [63] Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Long and short guidance in score identity distillation for one-step text-to-image generation. *arXiv* preprint arXiv:2406.01561, 2024.
- [64] Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity distillation: Rapidly surpassing the teacher in one step. *arXiv* preprint *arXiv*:2410.14919, 2024.
- [65] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation. In *Forty-first International Conference on Machine Learning*, 2024.
- [66] Yuanzhi Zhu. On the connection between dmd and gan for diffusion distillation. Blog post, Nov 2025.
- [67] Yuanzhi Zhu, Xingchao Liu, and Qiang Liu. Slimflow: Training smaller one-step diffusion models with rectified flow. In *European Conference on Computer Vision*, pages 342–359. Springer, 2025.
- [68] Yuanzhi Zhu, Xi Wang, Stéphane Lathuilière, and Vicky Kalogeiton. Di Mo: Distilling masked diffusion models into one-step generator. *arXiv preprint arXiv:2503.15457*, 2025.
- [69] Yuanzhi Zhu, Xi Wang, Stéphane Lathuilière, and Vicky Kalogeiton. Soft-di [m] o: Improving one-step discrete image generation with soft embeddings. arXiv preprint arXiv:2509.22925, 2025.

A Limitations and Future Works.

This work primarily presents preliminary results. In future studies, we plan to extend our approach to a wider range of teacher models and conduct comprehensive comparisons with state-of-the-art methods. Moreover, while our current experiment only use the classifier in Eq. (4), we aim to incorporate adversarial training based on it to further enhance the performance of one-step generation.

B Derivation

Theorem B.0 (Gradient of Bregman divergence). Let p_t be a reference (teacher) marginal density at time t and let $q_t = q_{\theta,t}$ be the marginal induced by the generator G_{θ} at time t. These intermediate densities are obtained via the forward diffusion process. Define the intermediate density ratio $r_t(x) := \frac{q_{\theta,t}(x)}{p_t(x)}$. Assume that h is twice continuously differentiable. Then the gradient of the Bregman divergence $D_h(r_t||1) = \mathbb{E}_{p_t}[h(r_t)] - h(1)$ with respect to θ admits the following form:

$$\nabla_{\theta} D_h(r_t \| 1) = -\mathbb{E}_{\epsilon} \left[w(t) h''(r_t(x_t)) r_t(x_t) \left(\nabla_{x_t} \log p_t(x_t) - \nabla_x \log q_{\theta,t}(x_t) \right) \nabla_{\theta} G_{\theta}(\epsilon) \right].$$
 (6)

where w(t) is a weight function.

Proof. Recall that

$$D_h(r_t||1) = \int p_t(x) \Big[h(r_t(x)) - h(1) - h'(1) \big(r_t(x) - 1 \big) \Big] dx, \tag{7}$$

where $r_t(x) = q_{\theta,t}(x)/p_t(x)$ and p_t do not depend on θ . Differentiating under the integral sign and using that

$$\int p_t(x) \, \nabla_{\theta} r_t(x) \, \mathrm{d}x = \nabla_{\theta} \int q_{\theta,t}(x) \, \mathrm{d}x = \nabla_{\theta} 1 = 0, \tag{8}$$

we obtain

$$\nabla_{\theta} D_h(r_t \| 1) = \int p_t(x) h'(r_t(x)) \nabla_{\theta} r_t(x) dx = \int h'(r_t(x)) \nabla_{\theta} q_{\theta,t}(x) dx. \tag{9}$$

Next, we express $q_{\theta,t}$ as the pushforward of a base noise $\epsilon \sim p(\epsilon)$ through the generator at time t, $x_t = F(G_{\theta}(\epsilon), z)$ with fixed forward process $F(x, z) = \alpha_t x + \sigma z$ and $z \sim \mathcal{N}(0, I)$:

$$q_{\theta,t}(x) = \int p(\epsilon) \,\delta(x - x_t) \,\mathrm{d}\epsilon,\tag{10}$$

where δ is the Dirac delta. Differentiating equation 10 w.r.t. θ and using the chain rule for distributions yields

$$\nabla_{\theta} q_{\theta,t}(x) = \int p(\epsilon) \, \nabla_{\theta} \delta(x - x_t) \, d\epsilon = -w(t) \int p(\epsilon) \, \nabla_x \delta(x - x_t) \, \nabla_{\theta} G_{\theta}(\epsilon) \, d\epsilon. \tag{11}$$

Substituting equation 11 into equation 9 gives

$$\nabla_{\theta} D_h(r_t \| 1) = -\int w(t)h'(r_t(x)) \left[\int p(\epsilon) \nabla_x \delta(x - x_t) \nabla_{\theta} G_{\theta}(\epsilon) d\epsilon \right] dx$$
 (12)

$$= -\int p(\epsilon) \left[w(t) \int h'(r_t(x)) \nabla_x \delta(x - x_t) \, \mathrm{d}x \right] \nabla_\theta G_\theta(\epsilon) \, \mathrm{d}\epsilon. \tag{13}$$

We now integrate by parts in x (assuming boundary terms vanish):

$$\int h'(r_t(x)) \nabla_x \delta(x - x_t) dx = -\int \delta(x - x_t) \nabla_x h'(r_t(x)) dx.$$
 (14)

Hence

$$\nabla_{\theta} D_{h}(r_{t} \| 1) = \int p(\epsilon) \left[\int w(t) \delta(x - x_{t}) \nabla_{x} h'(r_{t}(x)) dx \right] \nabla_{\theta} G_{\theta}(\epsilon) d\epsilon$$

$$= \mathbb{E}_{\epsilon} \left[w(t) \nabla_{x} h'(r_{t}(x_{t})) \nabla_{\theta} G_{\theta}(\epsilon) \right].$$
(15)

Apply the chain rule $\nabla_x h'(r_t) = h''(r_t) \nabla_x r_t$ and $\nabla_x r_t = r_t (\nabla_x \log q_{\theta,t} - \nabla_x \log p_t)$ yields Eq. (4) stated in the theorem. An alternative proof can be constructed following the approach of [57].

C Related Works: Diffusion Distillation

Distillation methods for accelerating diffusion and flow models fall into two broad families. ODEbased distillation exploits the teacher's Probability Flow ODE (PF-ODE) to derive regressionstyle objectives for a student model [3, 4, 12, 13, 14, 18, 23, 27, 31, 41, 45, 56, 67]. These approaches frame distillation as learning an ODE-consistent mapping, often enabling stable oneor few-step samplers which preserves the coupling induced by teacher models' PF-ODE. By contrast, distribution-based methods align the student generator's output distribution with the teacher's multi-step sampling distribution (or with a specified data distribution) without relying on an explicit PF-ODE. This class covers divergence- and adversarial-style matching techniques [8, 28, 30, 33, 42, 51, 52, 53, 54, 58, 59, 61, 62, 63, 64, 65, 68, 69]. Compared to distributionbased methods, ODE-based formulations optimize more indirect objectives that enforce consistency with an underlying continuous-time dynamics. These ODE constraints are sufficient but not necessary for correct one-step generation. Consequently, ODE-based methods are more restrictive, while distribution-based formulations directly match the target distribution and thus allow a broader family of solutions and greater modeling flexibility. In f-distil, [55] extend the VSD framework from reverse Kullback-Leibler (KL) divergence to more general f-divergence and use discriminator to estimate the density ratio. A notable feature of many distribution-based methods is that they match not only the final data distribution but also the intermediate noisy-data distributions encountered during sampling; this property has also been referred to as *Interpolation Distillation* [24].

D Experimental Setup

Datasets and Pre-trained Teacher Models. Our experiments to demonstrate the effectiveness of Di-Bregman are performed on the CIFAR-10 [20] 32×32 for unconditional generation and on the LAION [43] and COCO [21] datasets for text-to-image generation. The pre-trained teacher models are adopted from the official checkpoints from previous works, EDM [17], and Stable Diffusion v1.5 [39].

Implementation Details. All experiments are conducted on a single NVIDIA H100 GPU. For CIFAR-10 (32×32) experiments, we adopt the U-Net architecture of NCSN++ [47]. The implementation is based on the SiDA framework [64], where the discriminator is built upon the auxiliary model encoder, and the mean feature vector is used as the predicted discriminator logits. For the text-to-image experiment, we use Stable-Diffusion v1.5 [39], a 900M-parameter U-net-based model, trained on LAION [43] and distilled at 512×512 resolution. All results presented in the paper are one-step generated using our distilled generator.

Evaluation Metrics. The metrics we use for quantitative results on CIFAR-10 are Fréchet Inception Distance (FID) [15] and Inception Score (IS) [40]. In our experiments, FID is computed with 50,000 generated samples compared against the training set using Clean-FID [36], while IS is calculated from the same generated images based on their Inception features.

E Additional qualitative results

In Fig. 3, we provide additional qualitative comparisons, where our one-step student produces visually coherent and faithful samples, closely matching the teacher output across diverse prompts. Additional uncurated CIFAR-10 samples from our Di-Bregman model are shown in Fig. 6, demonstrating diverse one-step generation, with an FID of 3.61.

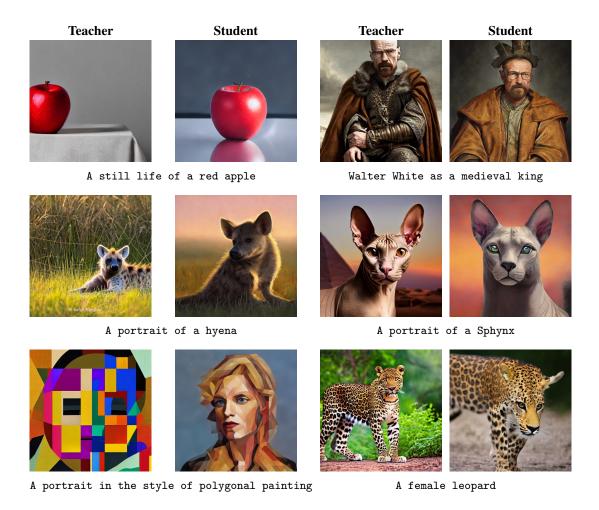


Figure 3: Qualitative comparison at 512×512 : Teacher 50 NFEs (first, third columns) vs Student 1 NFE (second, last columns) for six prompts (left and right blocks per row). The teacher is the Stable Diffusion v1.5 [39] model.

F Additional quantitative results

In this section, we provide some additional quantitative results from our one-step models.

Figures 4 and 5 show the evolution of one-step FID and IS, respectively, across different values of the Bregman parameter λ . We observe that Di-Bregmanconsistently improves over the reverse KL baseline for several λ configurations. In particular, settings such as $\lambda=3.0$, $\lambda=5.0$, and $\lambda=10.0$ yield the lowest one-step FID (Fig. 4) and the highest one-step IS (Fig. 5), confirming the robustness of Di-Bregmanacross a range of divergence parameters. Lower λ values (e.g., $\lambda \leq 1.0$) tend to perform closer to the baseline, while negative $\lambda=-1.0$ underperforms. These results demonstrate that Di-Bregmanoffers consistent improvements in sample quality metrics over the reverse KL distillation method.

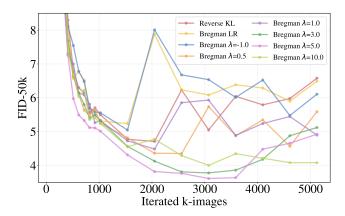


Figure 4: Evolution of one-step FID against number of iterated images. For $\lambda=3.0, \lambda=5.0$ or $\lambda=10.0$ Di-Bregman achieves a lower one-step FID.

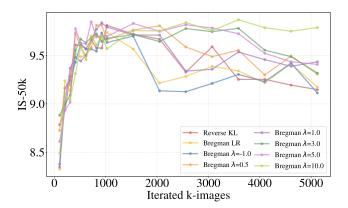


Figure 5: Evolution of one-step IS against number of iterated images. For $\lambda=3.0, \lambda=5.0$ or $\lambda=10.0$ Di-Bregman achieves a higher one-step IS.

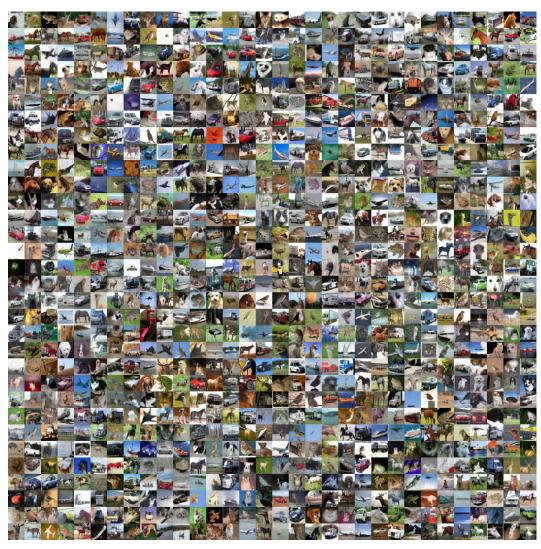


Figure 6: Uncurated samples from unconditional CIFAR-10 32×32 using Di-Bregman with single step generation (FID=3.61).

G General Divergence with a Fixed Reward-Tilted Target Ratio

We begin by defining a reward-tilted target distribution at the clean data level x_0 [35]. Given a base distribution $p(x_0)$ and an unnormalized reward function $R(x_0) \ge 0$, the corresponding reward-tilted clean distribution is

$$p^{\star}(x_0) \propto R(x_0) p(x_0) = \frac{R(x_0)}{Z_0} p(x_0), \qquad Z_0 := \mathbb{E}_p[R(x_0)].$$
 (16)

To obtain the corresponding target distribution at diffusion time t, we push $p^*(x_0)$ through the fixed forward noising kernel $q_t(x_t \mid x_0)$:

$$p_t^{\star}(x_t) = \int q_t(x_t \mid x_0) \, p^{\star}(x_0) \, dx_0 = \frac{1}{Z_0} \int R(x_0) \, p(x_0) \, q_t(x_t \mid x_0) \, dx_0. \tag{17}$$

Using the marginal identity

$$p_t(x_t) = \int p(x_0) \, q_t(x_t \mid x_0) \, dx_0, \tag{18}$$

the tilted marginal p_t^{\star} admits the ratio representation

$$p_t^{\star}(x_t) = \frac{R_t(x_t)}{Z_0} p_t(x_t), \qquad R_t(x_t) := \mathbb{E}[R(x_0) \mid x_t] = \frac{\int R(x_0) p(x_0) q_t(x_t \mid x_0) dx_0}{p_t(x_t)}.$$
(19)

Thus the unnormalized intermediate reward $R_t(x_t)$ is precisely the conditional expectation of the clean reward.

G.1 Intermediate Unnormalized Reward

The function R_t is the unique quantity for which

$$p_t^{\star}(x_t) \propto R_t(x_t) \, p_t(x_t) = \int q_t(x_t \mid x_0) \, R(x_0) \, p(x_0) \, dx_0. \tag{20}$$

Equivalently, by Bayes' rule,

$$R_t(x_t) = \mathbb{E}[R(x_0) \mid x_t] = \int R(x_0) \, p(x_0 \mid x_t) \, dx_0. \tag{21}$$

Taylor Expansion Around the Posterior Mean. Let

$$\mu_{0,t}(x_t) := \mathbb{E}[x_0 \mid x_t], \qquad \Sigma_{0,t}(x_t) := \text{Cov}(x_0 \mid x_t).$$
 (22)

Expanding $R(x_0)$ around $\mu_{0,t}$ gives

$$R(x_0) \approx R(\mu_{0,t}) + \nabla R(\mu_{0,t})^{\top} (x_0 - \mu_{0,t}) + \frac{1}{2} (x_0 - \mu_{0,t})^{\top} \nabla^2 R(\mu_{0,t}) (x_0 - \mu_{0,t}). \tag{23}$$

Taking $\mathbb{E}[\cdot \mid x_t]$ yields

$$\mathbb{E}[R(x_0) \mid x_t] \approx R(\mu_{0,t}) + \frac{1}{2} \operatorname{Tr} \left(\nabla^2 R(\mu_{0,t}) \, \Sigma_{0,t} \right). \tag{24}$$

First-Order Approximation. When the posterior variance is small (e.g. low noise or highly informative forward kernels), the second-order term is negligible:

$$R_t(x_t) = \mathbb{E}[R(x_0) \mid x_t] \approx R(\mu_{0,t}(x_t)).$$
 (25)

This approximation is widely used in classifier guidance, reward-guided diffusion, and flow-based preference shaping [24].

G.2 Normalizing Constant

The intermediate normalizer is

$$Z_{t} = \mathbb{E}_{x_{t} \sim p_{t}} \left[R_{t}(x_{t}) \right] = \int p_{t}(x_{t}) R_{t}(x_{t}) dx_{t}. \tag{26}$$

Substituting the definition of R_t and applying the law of total expectation,

$$Z_t = \mathbb{E}_{x_t} \big[\mathbb{E}[R(x_0) \mid x_t] \big] = \mathbb{E}_{x_0 \sim p}[R(x_0)] =: Z_0.$$
 (27)

Hence the normalizing constant is *independent of* t, and we use Z_0 for this normalizing constant across different t:

$$Z_t = Z_0 = \mathbb{E}_{x_0 \sim p}[R(x_0)] \quad \text{for all } t.$$
 (28)

Defining the normalized intermediate ratio

$$\tilde{R}_t(x_t) := \frac{R_t(x_t)}{Z_0} = \frac{\mathbb{E}[R(x_0) \mid x_t]}{\mathbb{E}_p[R(x_0)]},\tag{29}$$

and using the first-order approximation,

$$\tilde{R}_t(x_t) \approx \frac{R(\mu_{0,t}(x_t))}{\mathbb{E}_p[R(x_0)]}.$$
(30)

In practice, assuming new samples arise from the same underlying clean distribution p, the normalizer may be estimated once from an empirical dataset [11]:

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} R(x_0^{(i)}), \qquad x_0^{(i)} \sim p(x_0), \tag{31}$$

and reused for all t.

G.3 Gradient of the General Bregman Divergence

The Bregman divergence between the model ratio r_t and target ratio r_t^* is

$$D_h(r_t||r_t^*) = \int p_t(x) \Big(h(r_t(x)) - h(r_t^*(x)) - h'(r_t^*(x)) (r_t(x) - r_t^*(x)) \Big) dx.$$
 (32)

Differentiating w.r.t. θ ,

$$\nabla_{\theta} D_h(r_t || r_t^{\star}) = \int p_t(x) h'(r_t(x)) \nabla_{\theta} r_t(x) dx - \int p_t(x) h'(r_t^{\star}(x)) \nabla_{\theta} r_t(x) dx.$$
 (33)

When $r_t^\star \equiv 1$, the second term vanishes, recovering the default Di-Bregman gradient. Under reward tilting, however, $r_t^\star(x) = \frac{R_t(x_t)}{Z_0}$ is no longer constant and this correction term must be preserved.

Final Gradient Form. Using

$$\nabla_{\theta} r_t(x_t) = r_t(x_t) \left(\nabla_{x_t} \log p_t(x_t) - \nabla_{x_t} \log q_{\theta,t}(x_t) \right) \nabla_{\theta} G_{\theta}(\epsilon), \qquad x_t = G_{\theta}(\epsilon), \tag{34}$$

and the chain rule for $r_t^{\star}(x_t)$, we obtain

$$\nabla_{\theta} D_h(r_t \| r_t^{\star}) = -\mathbb{E}_{\epsilon} \left[h''(r_t(x_t)) r_t(x_t) \left(\nabla_{x_t} \log p_t(x_t) - \nabla_{x_t} \log q_{\theta,t}(x_t) \right) \nabla_{\theta} G_{\theta}(\epsilon) - h''(r_t^{\star}(x_t)) \nabla_{\theta} r_t^{\star}(x_t) \right]. \tag{35}$$

The first term matches default Di-Bregman training, while the second term encodes a *reward-induced correction* arising from the non-constant target ratio.

Interpretation as Reward-Tilted Distillation. The reward-tilted target distribution at time t satisfies

$$p_t^{\star}(x_t) \propto \frac{R_t(x_t)}{Z_0} p_t(x_t), \qquad r_t^{\star}(x_t) = \tilde{R}_t(x_t) = \frac{R_t(x_t)}{Z_0}.$$
 (36)

Thus Eqs. (33) and (35) provide a principled mechanism for distilling a reward-tilted target into a one-step generator. The normalizer Z_0 acts only as a global scale and does not affect the gradient structure, meaning any unnormalized reward R can be used as long as it is properly propagated to time t.

This formulation unifies classical DMD ($r_t^{\star} \equiv 1$), reward-based refinement, and discriminator-driven density-ratio matching into a single framework for reward-tilted generative modeling.

H Distillation without a Teacher Model

Observe that in our original formulation the teacher model appears only through the true score appearing in the score difference term. Using the identity $\nabla_x r_t = r_t (\nabla_x \log q_{\theta,t} - \nabla_x \log p_t)$, we can replace this score difference with an estimate derived solely from a discriminator. Specifically, given a discriminator D_η , the density ratio is recovered via $r_t = \frac{1-D_\eta}{D_\eta}$. Plugging this into the Bregman objective yields the following gradient:

$$\nabla_{\theta} D_h(r_t \| 1) = -\mathbb{E}_{\epsilon} \left[w(t) h''(r_t(x_t)) \nabla_{x_t} r_t(x_t) \nabla_{\theta} G_{\theta}(\epsilon) \right]. \tag{37}$$

This update has the same structural form as the GAN generator gradient. Hence, our Di-Bregman objective naturally recovers GAN training rules when a teacher score is unavailable [60, 66].