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Abstract. Diffusion models excel in high-quality generation but suf-
fer from slow inference due to iterative sampling. While recent methods
have successfully transformed diffusion models into one-step generators,
they neglect model size reduction, limiting their applicability in compute-
constrained scenarios. This paper aims to develop small, efficient one-
step diffusion models based on the powerful rectified flow framework,
by exploring joint compression of inference steps and model size. The
rectified flow framework trains one-step generative models using two op-
erations, reflow and distillation. Compared with the original framework,
squeezing the model size brings two new challenges: (1) the initialization
mismatch between large teachers and small students during reflow; (2)
the underperformance of naive distillation on small student models. To
overcome these issues, we propose Annealing Reflow and Flow-Guided
Distillation, which together comprise our SlimFlow framework. With our
novel framework, we train a one-step diffusion model with an FID of 5.02
and 15.7M parameters, outperforming the previous state-of-the-art one-
step diffusion model (FID=6.47, 19.4M parameters) on CIFAR10. On
ImageNet 64×64 and FFHQ 64×64, our method yields small one-step
diffusion models that are comparable to larger models, showcasing the ef-
fectiveness of our method in creating compact, efficient one-step diffusion
models.

Keywords: Diffusion Models, Flow-based Models, One-Step Generative
Models, Efficient Models

1 Introduction

In recent years, diffusion models [14, 56] have revolutionized the field of im-
age generation [4, 32, 41, 46], surpassing the quality achieved by traditional ap-
proaches such as Generative Adversarial Networks (GANs) [9, 19], Normalizing
Flows (NFs) [5, 42] and Variational Autoencoders (VAEs) [22, 47]. Its success
even extends to other modalities, including audio [17, 23], video [8, 13, 40] and
3D content generation [30,45,58,61].

Despite these advancements, diffusion models face significant challenges in
terms of generation efficiency. Their iterative sampling process and substantial
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Fig. 1: (a) Comparison of different one-step diffusion models on the CIFAR10 dataset.
(b) To get powerful one-step diffusion model, our SlimFlow framework designs two
stages: Annealing Reflow provides a warm-start for the small 2-Rectified Flow model
by gradually shifting from training with random pairs to teacher pairs; Flow Guided
Distillation enhances the one-step small model by distillation from 2-Rectified Flow
with both off-line generated data using precise ODE solver and online generated data
using 2-step Euler solver.

model size pose considerable obstacles to widespread adoption, particularly in
resource-constrained environments, such as edge devices. To enhance the in-
ference speed of diffusion models, recent research has focused on two primary
strategies. The first strategy aims at reducing the number of inference steps,
which can be achieved through either adoption of fast solvers [6, 34, 52, 66, 70]
or distillation [10, 29, 35, 49, 53]. The second strategy focuses on lowering the
computational cost within each inference step, by model structure modifica-
tion [2,7,44,63], quantization [11,15,26,27,50,57], and caching [38,60]. Recently,
these techniques have been applied to various large-scale diffusion models, e.g.,
Stable Diffusion [48], to significantly improve their inference speed and reduce
their cost [33,36,39,62,65].

This paper focuses on advancing the rectified flow framework [29,31], which
has demonstrated promising results in training few/one-step diffusion models
[33]. While the framework has shown success in reducing inference steps, it has
not addressed the challenge of model size reduction. We aim to enhance the
rectified flow framework by simultaneously reducing both the number of infer-
ence steps and the network size of diffusion models. The rectified flow framework
straightens the trajectories of pre-trained generative probability flows through a
process called reflow, thereby decreasing the required number of inference steps.
This procedure also refines the coupling between noise and data distributions.
High-quality one-step generative models are then obtained by distilling from the
straightened flow. Unlike typical rectified flow applications that maintain an in-
variant model structure during the entire process, we aim to reduce the network
size in reflow and distillation, targeting efficient one-step diffusion models. It
introduces two key challenges: (1) The reflow operation typically initializes the
student flow with the pre-trained teacher’s weights to inherit knowledge and
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accelerate convergence. However, this strategy is inapplicable when the student
network has a different structure. (2) The smaller student network suffers from
reduced capacity, causing naive distillation to underperform. To address these
challenges, we propose SlimFlow, comprising two stages: Annealing Reflow and
Flow-Guided Distillation. Annealing Reflow provides a warm-start initialization
for the small student model by smoothly interpolating between training from
scratch and reflow. Flow-Guided Distillation introduces a novel regularization
that leverages guidance from the learned straighter student flow, resulting in
better distilled one-step generators. SlimFlow achieves state-of-the-art Frechet
Inception Distance (FID) among other one-step diffusion models with a lim-
ited number of parameters. Furthermore, when applied to ImageNet 64×64 and
FFHQ 64×64, SlimFlow yields small one-step diffusion models that are compa-
rable to larger models.

2 Background

2.1 Diffusion Models

Diffusion models define a forward diffusion process that maps data to noise by
gradually perturbing the input data with Gaussian noise. Then, in the reverse
process, they generate images by gradually removing Gaussian noise, with the
intuition from non-equilibrium thermodynamics [51]. We denote the data x at t
as xt. The forward process can be described by an Itô SDE [56]:

dxt = f(xt, t)dt+ g(t)dw, (1)

where w is the standard Wiener process, f(·, t) is a vector-valued function called
the drift coefficient, and g(·) is a scalar function called the diffusion coefficient.

For every diffusion process in Eq. (1), there exists a corresponding determin-
istic Probability Flow Ordinary Differential Equation (PF-ODE) which induces
the same marginal density as Eq. (1):

dxt

dt
= f(xt, t)−

1

2
g2(t)∇xt

log pt(xt), (2)

where pt(·) is the marginal probability density at time t. ∇xt
log pt(xt) is called

the score function, and can be modelled as sθ(x, t) using a neural network θ.
Usually, the network is trained by score matching [16, 54, 55]. Starting with
samples from an initial distribution πT such as a standard Gaussian distribution,
we can generate data samples by simulating Eq. (2) from t = T to t = 0. We
call Eq. (2) with the approximated score function sθ(xt, t) the empirical PF-
ODE, written as dxt

dt = f(xt, t) − 1
2g

2(t)sθ(xt, t). It is worth noting that the
deterministic PF-ODE gives a deterministic correspondence between the initial
noise distribution and the generated data distribution.
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2.2 Rectified Flows

Rectified flow [28,29,31] is an ODE-based generative modeling framework. Given
the initial distribution πT and the target data distribution π0, rectified flow
trains a velocity field parameterized by a neural network with the following loss
function,

Lrf(θ) := ExT∼πT ,x0∼π0

[∫ T

0

∥∥vθ(xt, t)− (xT − x0)
∥∥2
2
dt

]
,

where xt = (1− t/T )x0 + txT /T.

(3)

Without loss of generalization, T is usually set to 1. Based on the trained rectified
flow, we can generate samples by simulating the following ODE from t = 1 to
t = 0,

dxt

dt
= vθ(xt, t). (4)

PF-ODEs transformed from pre-trained diffusion models can be seen as special
forms of rectified flows. For a detailed discussion of the mathematical relationship
between them, we refer readers to [29,31]. In computer, Eq. (4) is approximated
by off-the-shelf ODE solvers, e.g., the forward Euler solver,

xt− 1
N

= xt −
1

N
vθ(xt, t), ∀t ∈ {1, 2, . . . , N}/N. (5)

Here, the ODE is solved in N steps with a step size of 1/N . Large N leads to
accurate but slow simulation, while small N gives fast but inaccurate simula-
tion. Fortunately, straight probability flows with uniform speed enjoy one-step
simulation with no numerical error because xt = x1 − (1− t)vθ(x1, 1).
Reflow In the rectified flow framework, a special operation called reflow is
designed to train straight probability flows,

Lreflow(ϕ) := Ex1∼π1

[∫ T

0

∥∥vϕ(xt, t)− (x1 − x̂0)
∥∥2
2
dt

]
,

where xt = (1− t)x̂0 + tx1 and x̂0 = ODE[vθ](x1).

(6)

Compared with Eq. (3), x̂0 is not a random sample from distribution π0 that is
independent with x1 anymore. Instead, x̂0 = ODE[vϕ](x1) := x1+

∫ 0

1
vθ(xt, t)dt

is induced from the pre-trained flow vθ. After training, the new flow vϕ has
straighter trajectories and requires fewer inference steps for generation. A com-
mon practice in reflow is initializing vϕ with the pre-trained vθ for faster con-
vergence and higher performance [31]. Following previous works, we name vθ as
1-rectified flow and vϕ as 2-rectified flow. The straightness of the learned flow v
can be defined as:

S(v) =

∫ 1

0

E
[
∥v(xt, t)− (x1 − x0)∥2

]
dt, (7)
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Distillation Given a pre-trained probability flow, for example, vϕ, we can
further enhance their one-step generation via distillation,

Ldistill(ϕ
′) := Ex1∼π1 [D(ODE[vϕ](x1),x1 − vϕ′(x1, 1))] . (8)

In this equation, D is a discrepancy loss that measures the difference between
two images, e.g., ℓ2 loss or the LPIPS loss [67]. Through distillation, the distilled
model vϕ′ can use one-step Euler discretization to approximate the result of the
entire flow trajectory. Note that reflow can refine the deterministic mapping
between the noise and the generated samples defined by the probability flow [31,
33]. Consequently, distillation from vϕ gives better one-step generators than
distillation from vθ.

3 SlimFlow

In this section, we introduce the SlimFlow framework for learning small, efficient
one-step generative models. SlimFlow enhances the rectified flow framework by
improving both the reflow and distillation stages. For the reflow stage, we pro-
pose Annealing Reflow. This novel technique provides a warm-start initialization
for the small student model. It smoothly transitions from training a 1-rectified
flow to training a 2-rectified flow, accelerating the training convergence of the
smaller network. For the distillation stage, we propose Flow-Guided Distillation,
which leverages the pre-trained 2-rectified flow as an additional regularization
during distillation to improve the performance of the resulting one-step model.
By combining these two techniques, SlimFlow creates a robust framework for
training efficient one-step diffusion models that outperform existing methods in
both model size and generation quality.

3.1 Annealing Reflow

The reflow procedure in the rectified flow framework trains a new, straighter flow
vϕ from the pre-trained 1-rectified flow vθ, as described in Eq. (6). Typically,
when vϕ and vθ have the same model structure, vϕ is initialized with vθ’s weights
to accelerate training. However, our goal of creating smaller models cannot adopt
this approach, as vϕ and vθ have different structures. A naive solution would
be to train a new 1-rectified flow using the smaller model with Eq. (3) and use
this as initialization. However, this strategy is time-consuming and delays the
process of obtaining an efficient 2-rectified flow with the small model.

To address this challenge, we propose Annealing Reflow, which provides an
effective initialization for the small student model without significantly increas-
ing training time. This method starts the training process with random pairs,
as in Eq. (3), then gradually shifts to pairs generated from the teacher flow, as
in Eq. (6).
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Formally, given the teacher velocity field vθ defined by a large neural network
θ, the objective of Annealing Reflow is defined as,

Lk
a-reflow(ϕ) :=Ex1,x′

1∼π1

[∫ T

0

∥∥vϕ(x
β(k)
t , t)−

(
x
β(k)
1 − x̂0

)∥∥2
2
dt

]
,

where x
β(k)
t = (1− t)x̂0 + tx

β(k)
1 ,

x
β(k)
1 =

(√
1− β2(k)x1 + β(k)x′

1

)
,

x̂0 = ODE[vθ](x1) = x1 +

∫ 0

1

vθ(xt, t)dt.

(9)

In Eq. (9), x1 and x′
1 are independent random samples from the initial distri-

bution π1. k refers to the number of training iterations, and β(k) : N → [0, 1]
is a function that maps k to a scalar between 0 and 1. The function β(k) must
satisfy two key conditions:

1. β(0) = 1: This initial condition reduces L0
a-reflow to the rectified flow objective

(Eq. (3)), with x̂0 generated from the well-trained teacher model instead of
being randomly sampled from π0. Note that when vθ is well-trained, x̂0 also
follows the target data distribution π0.

2. β(+∞) = 0: This asymptotic condition ensures that L+∞
a-reflow converges to the

reflow objective (Eq. (6)), guaranteeing that the small model will eventually
become a valid 2-rectified flow.

By carefully choosing the schedule β, we create a smooth transition from training
the small student model using random pairs to using pairs generated from the
large teacher flow. This approach provides an appropriate initialization for the
student model and directly outputs a small 2-rectified flow model, balancing
efficiency and effectiveness in the training process.
Leveraging the Intrinsic Symmetry in Reflow Pairs. To perform reflow,
a dataset of pair (x1, x̂0) is usually generated by the teacher flow before train-
ing the student model. We find that the hidden symmetry in the pairs can be
exploited to create new pairs without simulating the teacher flow. Specifically,
if the initial noise x1 is horizontally flipped (referred to as H-Flip), the corre-
sponding image x̂0 is also horizontally flipped. As a result, for each generated
pair (x1, x̂0), we can also add (H-Flip(x1),H-Flip(x̂0)) as a valid pair to double
the sample size of our reflow dataset.

3.2 Flow-Guided Distillation

Distillation is the other vital step in training one-step diffusion models with the
rectified flow framework. To distill the student flow, naive distillation (Eq. (8))
requires simulating the entire student 2-rectified flow with off-the-shelf solvers,
e.g., Runge-Kutta 45 (RK45) solver, to get the distillation target ODE[v](x1).
In most times, practitioners generate a dataset of M teacher samples in advance
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Fig. 2: (a) Generation from 1-Rectified Flow trained without data augmentation. (b)
Generation from the 1-Rectified Flow model in (a) after applying horizontal flip to the
same set of random noises in (a). (c) Horizontally flipping the noise results in hori-
zontally flipped generated image, but vertical flip does not result in vertically flipped
generated image.

to training the student model, denoted as Ddistill =
{(

x
(i)
1 ,ODE[v](x

(i)
1 )

)}M

i=1
.

Such simulation takes tens of steps, leading to excessive time and storage for
the distilled one-step model. On the one hand, for small models in our scenario,
we want to use large M to reach satisfying one-step models due to their limited
capacity. On the other hand, we also expect to avoid costly data generation in
the distillation stage.

To balance this trade-off, we propose flow-guided distillation, where we com-
plement the expensive direct distillation with an additional regularization. This
regularization is based on few-step generation from the 2-rectified flow vϕ. When
estimating the integration result of ODE[vϕ](x1), we can adopt the forward Eu-
ler solver,

xti = xti+1
+ (ti − ti+1)vϕ(xti+1

, ti+1), ∀i ∈ {0, 1, . . . , N − 1}, (10)

where the N time steps {ti}Ni=0 are defined by the user and t0 = 0, tN = 1.
To find an appropriate supervision for one-step simulation without cumbersome
precise simulation with advanced solvers, a feasible choice is two-step simulation,
which is,

x̂0 = x1 − (1− t)vϕ(x1, 1)− tvϕ(xt, t). (11)

Here, t can be an intermediate time point between (0, 1). Using this two-step
approximation, we get another distillation loss,

L2-step(ϕ
′) := Ex1∼π1

[∫ 1

0

D(x1 − (1− t)vϕ(x1, 1)− tvϕ(xt, t),x1 − vϕ′(x1, 1))dt
]
.

(12)
While this two-step generation is not as accurate as the precise generation
ODE[vϕ](x1) with Runge-Kutta solvers, it can serve as a powerful additional
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Algorithm 1 Flow-Guided Distillation
Require: Pre-trained 2-rectified flow vϕ, dataset Ddistill generated with vϕ.
1: Initialize the one-step student model vϕ′ with the weights of vϕ.
2: repeat
3: Randomly sample (x1,ODE[vϕ](x1)) ∼ Ddistill.
4: Compute Ldistill(ϕ

′) with Eq. (8).
5: Randomly sample x1 ∼ π1.
6: Compute L2-step(ϕ

′) with Eq. (12).
7: Compute Lcombined(ϕ

′) = Ldistill(ϕ
′) + L2-step(ϕ

′).
8: Optimize ϕ′ with an gradient-based optimizer using ∇ϕ′Lcombined.
9: until Lcombined converges.

10: Return one-step model vϕ′ .

regularization in the distillation process to boost the performance of the student
one-step model. Because two-step generation is fast, we can compute this term
online as extra supervision to the student one-step model without the need to
increase the size of Ddistill. Our final distillation loss is,

Lcombined(ϕ
′) = Ldistill(ϕ

′) + L2-step(ϕ
′). (13)

It is worth mentioning that we can use more simulation steps to improve the
accuracy of the the few-step regularization within the computational budget. In
our experiments, using two-step generation as our regularization already gives
satisfying improvement. We leave the discovery of other efficient regularization
as our future work. The whole procedure of our distillation stage is captured in
Algorithm 1.

4 Experiments

In this section, we provide empirical evaluation of SlimFlow and compare it
with prior arts. The source code is available at https://github.com/yuanzhi-
zhu/SlimFlow.

4.1 Experimental Setup

Datasets and Pre-trained Teacher Models. Our experiments are per-
formed on the CIFAR10 [24] 32×32 and the FFHQ [19] 64×64 datasets to demon-
strate the effectiveness of SlimFlow. Additionally, we evaluated our method’s
performance on the ImageNet [3] 64×64 dataset, focusing on conditional gener-
ation tasks. The pre-trained large teacher models are adopted from the official
checkpoints from previous works, Rectified Flow [29] and EDM [18].
Implementation Details. For experiments on CIFAR10 32×32 and the
FFHQ 64×64, we apply the U-Net architecture of NCSN++ proposed in [56]. For
experiments on ImageNet 64×64, we adopt a different U-Net architecture pro-
posed in [4]. In the CIFAR10 experiments, we executed two sets of experiments

https://github.com/yuanzhi-zhu/SlimFlow
https://github.com/yuanzhi-zhu/SlimFlow
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Category Method #Params NFE (↓) FID (↓) MACs (↓)

Teacher Model EDM [18] 55.7M 35 1.96 20.6G
1-Rectified Flow [31] 61.8M 127 2.58 10.3G

Diffusion
+ Pruning

Proxy Pruning [25] 38.7M 100 4.21
Diff-Pruning [7] 27.5M 100 4.62 5.1G
Diff-Pruning [7] 19.8M 100 5.29 3.4G
Diff-Pruning [7] 14.3M 100 6.36 2.7G

Diffusion
+ Fast Samplers

AMED-Solver [70] 55.7M 5 7.14 20.6G
GENIE [6] 61.8M 10 5.28 10.3G
3-DEIS [66] 61.8M 10 4.17 10.3G
DDIM [52] 35.7M 10 13.36 6.1G
DPM-Solver-2 [34] 35.7M 10 5.94 6.1G
DPM-Solver-Fast [34] 35.7M 10 4.70 6.1G

Diffusion
+ Distillation

DSNO [69] 65.8M 1 3.78
Progressive Distillation [49] 60.0M 1 9.12
Score Mismatching [64]† 24.7M 1 8.10
TRACT [1] 19.4M 1 6.47
Diff-Instruct [37]† 55.7M 1 4.53 20.6G
TRACT [1] 55.7M 1 3.78 20.6G
DMD [65]† 55.7M 1 3.77 20.6G
Consistency Distillation (EDM teacher) [53] 55.7M 1 3.55 20.6G
1-Rectified Flow (+distill) [29] 61.8M 1 6.18 10.3G
2-Rectified Flow (+distill) [29] 61.8M 1 4.85 10.3G
3-Rectified Flow (+distill) [29] 61.8M 1 5.21 10.3G
Consistency Distillation (EDM teacher) [53]∗ 27.9M 1 6.83 6.6G
SlimFlow (EDM teacher) 27.9M 1 4.53 6.6G
Knowledge Distillation [35] 35.7M 1 9.36 6.1G
Consistency Distillation (EDM teacher) [53]∗ 15.7M 1 7.21 3.7G
SlimFlow (EDM teacher) 15.7M 1 5.02 3.7G
SlimFlow (1-Rectified Flow teacher) 15.7M 1 5.81 3.7G

Table 1: Comparison on CIFAR10. ‘∗’ refers to reproduced results.

with two different teacher models: one is the pre-trained 1-Rectitied Flow [31] and
the other is the pre-trained EDM model [18]. For all the other experiments, we
adopt only the pre-trained EDM model as the large teacher model, unless specif-
ically noted otherwise. All the experiments are conducted on 4 NVIDIA 3090
GPUs. In Distillation, we found replacing vϕ(x1, 1) with vϕ′(x1, 1) in Eq. (12)
leads to high empirical performance as vϕ′ is a better one-step generator and
speed up the training by saving one forward of the 2-rectified flow, so we keep
that in our practice. More details can be found in the Appendix.
Evaluation Metrics. We use the Fréchet inception distance (FID) [12] to eval-
uate the quality of generated images. In our experiments, we calculate the FID
by comparing 50,000 generated images with the training dataset using Clean-
FID [43]. We also report the number of parameters (#Params), Multiply-Add
Accumulation (MACs), and FLoating-point OPerations per second (FLOPs) as
metrics to compare the computational efficiency of different models. It is im-
portant to note that in this paper, both MACs and FLOPs refer specifically to
the computation required for a single forward inference pass through the deep
neural network. We use Number of Function Evaluations (NFEs) to denote the
number of inference steps.



10 Zhu Y., Liu X., Liu Q.

Fig. 3: Random generation from our best one-step small models on three dif-
ferent datasets. Left: CIFAR10 32×32 (#Params=27.9M). Mid: FFHQ 64×64
(#Params=27.9M). Right: ImageNet 64×64 (#Params=80.7M).

Dataset Method #Params NFE (↓) FID (↓) MACs (↓) FLOPs (↓)

FFHQ
64×64

EDM [18] 55.7M 79 2.47 82.7G 167.9G
DDIM [52] 55.7M 10 18.30 82.7G 167.9G
AMED-Solver [70] 55.7M 5 12.54 82.7G 167.9G
BOOT [10] 66.9M 1 9.00 25.3G 52.1G
SlimFlow (EDM teacher) 27.9M 1 7.21 26.3G 53.8G
SlimFlow (EDM teacher) 15.7M 1 7.70 14.8G 30.4G

ImageNet
64×64

EDM [18] 295.9M 79 2.37 103.4G 219.4G
DDIM [52] 295.9M 10 16.72 103.4G 219.4G
AMED-Solver [70] 295.9M 5 13.75 103.4G 219.4G
DSNO [69] 329.2M 1 7.83
Progressive Distillation [49] 295.9M 1 15.39 103.4G 219.4G
Diff-Instruct [37] 295.9M 1 5.57 103.4G 219.4G
TRACT [1] 295.9M 1 7.43 103.4G 219.4G
DMD [65] 295.9M 1 2.62 103.4G 219.4G
Consistency Distillation [53] 295.9M 1 6.20 103.4G 219.4G
Consistency Training [53] 295.9M 1 13.00 103.4G 219.4G
BOOT [10] 226.5M 1 16.30 78.2G 157.4G
SlimFlow (EDM teacher) 80.7M 1 12.34 31.0G 67.8G

Table 2: Comparison on FFHQ 64×64 and ImageNet 64×64.

4.2 Empirical Results

SlimFlow on CIFAR10. We report the results on CIFAR10 in Table 1. For all
the SlimFlow models, we train them using Annealing Reflow with the data pairs
generated from the large teacher model for 800,000 iterations, then distilling
them to one-step generator with flow-guided distillation for 400,000 iterations.
For the consistency distillation baselines, we train them for 1,200,000 iterations
with the same EDM teacher to ensure a fair comparison. With only 27.9M param-
eters, one-step SlimFlow outperforms the 61.8M 2-Rectified Flow+Distill model
(FID: 4.53 ↔ 4.85). With the less than 20M parameters, SlimFlow gives better
FID (5.02, #Params=15.7M) than TRACT (6.48, #Params=19.4M) and Con-
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(a) (b)

Fig. 4: (a) Comparison of models trained with different methods on CIFAR10. (b)
Comparison between 2-rectified flow and the distilled one-step generator on CIFAR10.

Multi-Step RK45 One-Step Euler

27.9M

15.7M

7.0M

3.4M

Fig. 5: CIFAR10 samples from 2-rectified flow models trained with Annealing Reflow.
All images are generated with the same set of random noises.

sistency Distillation (7.21, #Params=15.7M). Additional SlimFlow results with
different parameters can be found in Fig. 4a for comparison with Consistency
Distillation [53] and in Fig. 4b for comparison with 2-rectified flow.
SlimFlow on FFHQ and ImageNet. We report the results of SlimFlow
on FFHQ 64×64 and ImageNet 64×64 in Table 2. For ImageNet 64×64, the
models are trained in the conditional generation scenarios where class labels are
provided. In FFHQ, our SlimFlow models surpasses BOOT with only 15.7M pa-
rameters. In ImageNet, SlimFlow obtains comparable performance as the 295.9M
models trained with Consistency Training, BOOT and Progressive Distillation,
using only 80.7M parameters. These results demonstrates the effectiveness of
SlimFlow in training efficient one-step generative models.
Analysis of Annealing Reflow. We examine the straightening effect of
Annealing Reflow. We measured the straightness in the Annealing Reflow stage
of models with different sizes on both the CIFAR10 32×32 and the FFHQ 64×64
dataset. Here, straightness is defined as in Eq. (7) following [31, 33]. In Fig. 6a,
straightness decreases as β(k) gradually approaches 0. In Fig. 6b, we observe
that the straightness of the resulting 2-rectified flows decreases as their number
of parameters increase. In Fig. 5, samples generated with four 2-rectified flows
with different samplers are presented. These results demonstrate the effectiveness
of Annealing Reflow in learning straight generative flows.
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Annealing H-Flip FID (↓)

- - 5.84
- ✓ 5.06
✓ - 5.46
✓ ✓ 4.51

Table 3: Ablation study on the
reflow strategy of SlimFlow.

β(k) FID (↓)

0 5.06
exp(−k/Kstep) 4.78

cos(πmin(1, k/2Kstep)/2) 4.79
(1 + cos(πmin(1, k/2Kstep)))/2 4.70

1−min(1, k/6Kstep) 4.51
Table 4: Ablation study on the annealing strat-
egy of SlimFlow. Recall that k is the number of
training iterations. We set Kstep = 50, 000.

Initialize from vϕ Source of Ddistill Loss D with L2-step FID

- 1-rectified flow vθ ℓ2 - 12.09
✓ 1-rectified flow vθ ℓ2 - 8.98
- 2-rectified flow vϕ ℓ2 - 9.19
✓ 2-rectified flow vϕ ℓ2 - 7.90
✓ 2-rectified flow vϕ ℓ2 ✓ 7.30
✓ 2-rectified flow vϕ LPIPS - 6.43
✓ 2-rectified flow vϕ LPIPS ✓ 5.81

Table 5: Ablation study on the distillation stage of SlimFlow on CIFAR10.

4.3 Ablation Study

Annealing Reflow. We examine the design choices in Annealing Reflow.
We train 2-rectified flow for 800,000 iterations and measure its FID with RK45
solver. In Table 3, we report the influence of the Annealing Reflow strategy
and the effectiveness of exploiting the intrinsic symmetry of reflow. It can be
observed that both the annealing strategy and the intrinsic symmetry improve
the performance of 2-rectified flow, and their combination gives the best result.
In Table 4, we analyze the schedule of β(k). When β(k) = 0, it is equivalent to
training 2-rectified flow with random initialization. All other schedules output
lower FID than β(k) = 0, showing the usefulness of our annealing strategy. We
adopt β(k) = 1−min(1, k/6Kstep) as our default schedule in our experiments.
Flow-Guided Distillation. In Table 5, we analyze the influence of different
choices in our distillation stage. We found that using our 2-step regularization
boosts the FID the the distilled one-step model. Using ℓ2 loss, it improves the
FID from 7.90 to 7.30. Using LPIPS loss, it improves the FID from 6.43 to 5.81.
We use the model architecture with 15.7M parameters for all ablation studies.

5 Related Work

Reducing the Inference Steps of Diffusion Models. Diffusion models
generate new samples through an iterative process, where a noisy image is re-
peatedly denoised by a neural network. To accelerate this process, researchers
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(a) (b)

Fig. 6: (a) Straightness of 2-rectified flows with different sizes during Annealing Reflow.
(b) Final straightness of 2-rectified flows with different numbers of parameters.

have proposed various methods, which can be categorized into two main ap-
proaches.

The first category is training-free methods, which aim to reduce the num-
ber of inference steps for existing diffusion models by optimizing the sampling
process. By reformulating diffusion models into PF-ODEs [56], numerous tech-
niques are introduced to accelerate sampling while minimizing quality loss. Some
of the notable examples in this area include DDIM [52], EDM [18], DEIS [66]
and DPM-solver [34]. A recent advancement in this category is the AMED-
Solver [70], which leverages the mean value theorem to minimize discretization
error, achieving high-quality generation with even fewer function evaluations.

Beyond these fast ODE salvers, distillation-based methods aim to achieve
few-step sampling, or even one-step sampling, by training a new student model
with the pre-trained multi-step diffusion models as teachers. Progressive Distil-
lation [49] proposed to repeatedly train a student network whose step size is
twice as the step size of the teacher and set the student as a new teacher for the
next round. BOOT [10] suggested distilling the knowledge of the teacher models
in a data-free manner with the help of the signal-ODE. Distribution Matching
Distillation [65] extended the idea of Variational Score Distillation [59] to train
a one-step generator by alternatively updating the one-step generator and a fake
data score function. Consistency models [36, 53] are a new family of generative
models that trains few-step diffusion models by applying consistency loss. Addi-
tionally, several methods have incorporated adversarial training to enhance the
performance of one-step diffusion models [21,62,64].
Reducing the Size of Diffusion Models. The increasing demand for low-
budget and on-device applications necessitates the development of compact diffu-
sion models, as current state-of-the-art models like Stable Diffusion are typically
very large. To address this challenge, researchers have explored various com-
pression techniques, primarily focusing on network pruning and quantization
methods.

Network pruning involves selectively removing weights from the network and
subsequently fine-tuning the pruned model to maintain performance comparable
to the pre-trained version. Diff-Pruning [7] utilizes Taylor expansion over pruned
timesteps to identify non-contributory diffusion steps and important weights
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through informative gradients. BK-SDM [20] discovers that block pruning com-
bined with feature distillation is an efficient and sufficient strategy for obtaining
lightweight models.

Another line of work is model quantization, which aims to reduce the stor-
age and computational requirements of diffusion models during deployment [11,
15,26,27,50,57]. Q-diffusion [26] introduces timestep-aware calibration and split
short-cut quantization, tailoring post-training quantization (PTQ) methods specif-
ically for diffusion models. EfficientDM [11] proposes a quantization-aware vari-
ant of the low-rank adapter (QALoRA), achieving Quantization-Aware Training
(QAT)-level performance with PTQ-like efficiency.

In summary, SlimFlow advances the state of the art by addressing the dual
challenge of minimizing both inference steps and neural network size, with the
ultimate goal of developing the most efficient diffusion models. While our ap-
proach shares some similarities with MobileDiffusion [68], which also explores
efficient structure design and acceleration of diffusion models, SlimFlow distin-
guishes itself in several key aspects: (1) SlimFlow is built upon the rectified
flow framework, which provides more stable training dynamics than the GAN-
based training used in MobileDiffusion; (2) Unlike MobileDiffusion’s focus on
fine-grained specific network structure optimization, SlimFlow offers a general
framework applicable to a wide range of efficient network architectures. This flex-
ibility allows our approach to leverage advancements in efficient network design
across the field, including MobileDiffusion’s efficient text-to-image network.

6 Limitations and Future Works

While our approach demonstrates advancements in efficient one-step diffusion
models, we acknowledge several limitations and areas for future research. The
quality of our one-step model is inherently bounded by the capabilities of the
teacher models, specifically the quality of synthetic data pairs they generate.
This limitation suggests a direct relationship between teacher model performance
and the potential of our approach. In the future, we will leverage more advanced
teacher models and real datasets. Besides, we plan to extend our method to
more network architectures, e.g., transformers and pruned networks. Finally,
given sufficient computational resources, we aim to apply our approach to more
complex diffusion models, such as Stable Diffusion.

7 Conclusions

In this paper, we introduced SlimFlow, an innovative approach to developing
efficient one-step diffusion models. Our method can significantly reduce model
complexity while preserving the quality of one-step image generation, as evi-
denced by our results on CIFAR-10, FFHQ, and ImageNet datasets. This work
paves the way for faster and more resource-efficient generative modeling, broad-
ening the potential for real-world applications of diffusion models.
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Appendix

A Results of Annealing Reflow with Different Fixed β

We present the sampled images and the corresponding FID over 5k images of
Annealing Reflow training of different fixed β using the same data pairs in Fig. 7.
We test the results with four different β values: {0, 0.1, 0.3, 0.5} and found that
the RK45 samples are similar in four different models but the quality of one-step
generated samples is much worse when β is large. This observation validates the
marginal preserving property of the Annealing Reflow training.
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rk45

NFE=1

β 0
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Fig. 7: Result on models with 15M parameters trained with different fixed β values.
The FIDs are calculated with only 5k generated samples.

B More Experimental Details

In Tab. 6, we list all the architecture choices and related hyper-parameters in
our experiments on CIFAR10 and FFHQ. In Tab. 7, we list all the architec-
ture choices and related hyper-parameters in our experiments on ImageNet. The
training of all the networks is smoothed by EMA with a ratio of 0.999999. Adam
optimizer is adopted with a learning rate of 2e − 4 and the dropout rate is set
to 0.15, following [29]. For the Annealing Reflow training, we use ℓ2 loss with
a uniform loss weight; for the distillation, we switch to the LPIPS loss. Most
of the ablation experiments are conducted with configuration D using the data
pairs from the 1-rectified flow teacher.

For the experiment on ImageNet, we also trained a model with configuration
J in Tab. 7, which has almost half the parameters but similar MACs to config-
uration I. We get an FID of 8.86 from the 2-rectified flow with RK45 sampler
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A B C D† E F G

#Blocks 4 4 2 2 2 1 1
Base Channels 128 128 128 96 64 64 64
Channel Multiplier (1, 2, 2, 2) (2, 2, 2) (1, 2, 2) (1, 2, 2) (1, 2, 2) (1, 1, 2) (1, 1)
Attention resolutions (16,) (16,) (16,) (16,) (16,) (16,) (16,)

Batch Size - - 128 128 128 128 128
Batch Size (FFHQ distillation) - - 64 64 128 128 -

#Paras 61.8M 55.7M 27.9M 15.7M 7.0M 3.4M 1.2M

MACs 10.3G 20.7G 6.6G 3.7G 1.6G 0.7G 0.5G
FLOPs 22.0G 42.7G 13.9G 7.9G 3.6G 1.5G 1.2G

Table 6: Architecture configurations that are used in this work for CIFAR10 and
FFHQ. † represents the default configuration for ablations. MACs and FLOPs are
calculated with input shape (1, 3, 32, 32).

H I J

Architecture
Configuration

#Blocks 3 2 2
Base Channels 192 128 128
Channel Multiplier (1, 2, 3, 4) (1, 2, 2, 4) (1, 2, 2, 2)
Attention resolutions (32,16,8) (32, 16) (32, 16)

Training Batch Size - 96 96
Batch Size (distillation) - 64 64

Model Size
#Paras 259.9M 80.7M 44.7M
MACs 103.4G 31.0G 28.1G
FLOPs 219.4G 67.8G 61.9G

Table 7: Architecture configurations that are used in this work for the ImageNet
dataset. MACs and FLOPs are calculated with input shape (1, 3, 64, 64).

Channel Multiplier #Paras MACs FLOPs FID (2-rectified flows) FID (distilled flows)

I (1, 2, 2, 4) 80.7M 31.0G 67.8G 8.89 12.34
J (1, 2, 2, 2) 44.7M 28.1G 61.9G 8.86 12.52

Table 8: Comparison between two ImageNet experiments in this work.

(NFE≈40) and a final FID of 12.52 on the final one-step flow. The comparison
is listed in Tab. 8.

For the Annealing Reflow training, we use 50k data pairs from the 1-rectified
flow, 100k data pairs from EDM on CIFAR10 dataset, 200k data pairs from EDM
on FFHQ dataset, and 400k data pairs from EDM on the ImageNet dataset. For
distillation, we always simulate 500k data pairs from the 2-rectified flows.
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For distillation, the loss after replacing the 2-rectified flow with the one-step
model as mentioned in Sec. 4.1 is:

L′
2-step(ϕ

′) := Ex1∼π1

[∫ 1

0

D(x1 − (1− t)vϕ′(x1, 1)− tvϕ(xt, t),x1 − vϕ′(x1, 1))dt
]
.

(14)
where a stop-gradient operation is added to the first vϕ′ . This will help the
convergence of the training in practice and save one forward step of the 2-rectified
flow.

All of the reference statistics for computing FID are from EDM [18]. All
of the straightness is calculated using 100 Euler steps and averaging over 256
images, with the following Eq. (7).

C Additional Samples from SlimFlow

In this section, we provide some additional samples from our one-step models.



22 Zhu Y., Liu X., Liu Q.

Fig. 8: Uncurated samples from unconditional CIFAR-10 32×32 using SlimFlow with
single step generation (FID=4.53).
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Fig. 9: Uncurated samples from unconditional FFHQ 64×64 using SlimFlow with sin-
gle step generation (FID=7.21).
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Fig. 10: Uncurated samples with random class labels from conditional ImageNet 64×64
using SlimFlow with single step generation (FID=12.34).

Mushroom

Red fox

School bus

Fig. 11: Uncurated samples with three given classes from conditional ImageNet 64×64
using SlimFlow with single step generation (FID=12.34).
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