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BACKGROUND
Plug-and-play Image Restoration (IR) has been
widely recognized as a flexible and interpretable
method for solving various inverse problems by
utilizing any off-the-shelf denoiser as the im-
plicit image prior. However, most existing meth-
ods focus on discriminative Gaussian denoisers.
Although diffusion models have shown impres-
sive performance for high-quality image synthe-
sis, their potential to serve as a generative de-
noiser prior to the plug-and-play IR methods re-
mains to be further explored.
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SAMPLING FRAMEWORK
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data subproblem: argminx ∥y −H(x)∥2 + ρt∥x− x(t)
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Illustration of our sampling method. For every state xt, following the prediction of the estimated x(t)

0

by the diffusion model, the measurement y is incorporated by solving the data proximal subproblem
(indicated by the red arrow). Subsequently, the next state xt−1 is derived by adding i.i.d noise back and
thus completing one step of reverse diffusion sampling.
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QUANTITATIVE RESULTS

FFHQ σn = 0.05 Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓

DiffPIR 100 27.36 59.65 0.236 26.57 65.78 0.255 26.64 65.77 0.260

DPS [1] 1000 25.46 65.57 0.247 23.31 73.31 0.289 25.77 67.01 0.256
DDRM [2] 20 25.93 101.89 0.298 - - - 27.92 89.43 0.265
DPIR [3] >20 27.79 123.99 0.450 26.41 146.44 0.467 28.03 133.39 0.456

ImageNet σn = 0.05 Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓

DiffPIR 100 22.80 93.36 0.355 24.01 124.63 0.366 23.18 106.32 0.371

DPS [1] 1000 19.58 138.80 0.434 17.75 184.45 0.491 22.16 114.93 0.383
DDRM [2] 20 22.33 160.73 0.427 - - - 23.89 118.55 0.358
DPIR [3] >20 23.86 189.92 0.476 23.60 210.31 0.489 23.99 204.83 0.475

FFHQ σn = 0.0 Inpaint (box) Inpaint (random) Deblur (Gaussian) Deblur (motion) SR (×4)

Method NFEs ↓ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓

DiffPIR 20 35.72 0.117 34.03 30.81 0.116 30.74 46.64 0.170 37.03 20.11 0.084 29.17 58.02 0.187
DiffPIR 100 25.64 0.107 36.17 13.68 0.066 31.00 39.27 0.152 37.53 11.54 0.064 29.52 47.80 0.174

DPS [1] 1000 43.49 0.145 34.65 33.14 0.105 27.31 51.23 0.192 26.73 58.63 0.222 27.64 59.06 0.209
DDRM [2] 20 37.05 0.119 31.83 56.60 0.164 28.40 67.99 0.238 - - - 30.09 68.59 0.188
DPIR [3] >20 - - - - - 30.52 96.16 0.350 38.39 27.55 0.233 30.41 96.16 0.362

METHODS
In the previously published research by Zhang
et al. [3], the Half-Quadratic-Splitting (HQS)
algorithm is employed to iteratively tackle the
Maximum A Posteriori (MAP) problem x̂ =
argminx

1
2σ2

n
∥y−H(x)∥2 +λP(x) within the con-

text of IR tasks. The algorithm’s process can be
stated mathematically as follows:


zk = argmin

z
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2(
√
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∥z− xk∥2 + P(z)

xk−1 = argmin
x

∥y −H(x)∥2 + µσ2
n∥x− zk∥2.

To harness the generative power of diffusion
models, we adopt the diffusion sampling sched-
ule, converting the original optimization method-
ology into a sampling technique. This introduces
a novel plug-and-play sampling framework, de-
fined as follows:
x(t)

0 = argmin
z
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t

∥z− xt∥2 + P(z)
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∥y −H(x)∥2 + ρt∥x− x(t)
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√
ᾱt−1x̂0 +
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1− ᾱt−1(

√
1− ζϵ̂+

√
ζϵt).

Compared to the DDIM sampling framework,
our method introduces an additional data sub-
problem. This extra component serves to guide
the sampling process towards the posterior dis-
tribution p(x|y).


