

BACKGROUND

Plug-and-play Image Restoration (IR) has been widely recognized as a flexible and interpretable method for solving various inverse problems by utilizing any off-the-shelf denoiser as the implicit image prior. However, most existing methods focus on discriminative Gaussian denoisers. Although diffusion models have shown impressive performance for high-quality image synthesis, their potential to serve as a generative denoiser prior to the plug-and-play IR methods remains to be further explored.

METHODS

In the previously published research by Zhang et al. [3], the Half-Quadratic-Splitting (HQS) algorithm is employed to iteratively tackle the Maximum A Posteriori (MAP) problem $\hat{\mathbf{x}}$ = $\arg\min_{\mathbf{x}} \frac{1}{2\sigma_{\mathbf{x}}^2} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^2 + \lambda \mathcal{P}(\mathbf{x})$ within the context of IR tasks. The algorithm's process can be stated mathematically as follows:

$$\begin{cases} \mathbf{z}_{k} = \arg\min_{\mathbf{z}} \frac{1}{2(\sqrt{\lambda/\mu})^{2}} \|\mathbf{z} - \mathbf{x}_{k}\|^{2} + \mathcal{P}(\mathbf{z}) \\ \mathbf{x}_{k-1} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^{2} + \mu \sigma_{n}^{2} \|\mathbf{x} - \mathbf{z}_{k}\|^{2} \end{cases}$$

To harness the generative power of diffusion models, we adopt the diffusion sampling schedule, converting the original optimization methodology into a sampling technique. This introduces a novel plug-and-play sampling framework, defined as follows:

$$\begin{cases} \mathbf{x}_{0}^{(t)} = \arg\min_{\mathbf{z}} \frac{1}{2\bar{\sigma}_{t}^{2}} \|\mathbf{z} - \mathbf{x}_{t}\|^{2} + \mathcal{P}(\mathbf{z}) \\ \mathbf{\hat{x}}_{0}^{(t)} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|^{2} + \rho_{t} \|\mathbf{x} - \mathbf{x}_{0}^{(t)}\|^{2} \\ \mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{\hat{x}}_{0} + \sqrt{1 - \bar{\alpha}_{t-1}} (\sqrt{1 - \zeta} \hat{\epsilon} + \sqrt{\zeta} \epsilon_{t}) \end{cases}$$

Compared to the DDIM sampling framework, our method introduces an additional data subproblem. This extra component serves to guide the sampling process towards the posterior distribution $p(\mathbf{x}|\mathbf{y})$.

DENOISING DIFFUSION MODELS FOR PLUG-AND-PLAY IMAGE RESTORATION

Yuanzhi Zhu¹, Kai Zhang¹, Jingyun Liang¹, Jiezhang Cao¹, Bihan Wen², Radu Timofte^{1,3}, Luc Van Gool^{1,4} ¹ETH Zürich ²Nanyang Technological University ³University of Würzburg ⁴KU Leuven

QUALITATIVE RESULTS

R 0.05)

REFERENCES

ICLR, 2023.

Kai Zhang and et al. Plug-and-play image restoration with deep denoiser prior. *in IEEE PAMI*, 2021.

[2] Bahjat Kawar and et al. Denoising diffusion

restoration models. in NeuIPS, 2022.

| Hyungjin Chung and et al. Diffusion posterior

sampling for general noisy inverse problems. in

Illustration of our sampling method. For every state x_t , following the prediction of the estimated $x_0^{(t)}$ by the diffusion model, the measurement y is incorporated by solving the data proximal subproblem (indicated by the red arrow). Subsequently, the next state x_{t-1} is derived by adding *i.i.d* noise back and thus completing one step of reverse diffusion sampling.

QU.

FFH Met Diff DPS DD DPI

Ima Met Diff

DPS DD DP

Meth DiffP DiffP

DPS [DDR DPIR

SAMPLING FRAMEWORK

AN	TITA	TIV	E RE	ESUL	TS											
IQ	σ_n	$\sigma_n = 0.05$		Deblu	ır (Gaus	sian)	Deblur (mo			tion)		SR (×4)				
thod	N	NFEs \downarrow		$PSNR \uparrow F$		$D \downarrow LPIPS \downarrow$		$PSNR \uparrow FI$		LPIPS \downarrow		PSNR ↑	FID	$FID \downarrow L$		
PIR		100	27.	.36	59.65	0.236	2	26.57	65.78	0.255		26.64	65.77		0.260	
5[1]	[1] 1000		25	.46	65.57	0.247	2	23.31	73.31	0.289		25.77	67.01		0.256	
RM [м [2] 20		25.	25.93 101.89 0.298					_		27.92	7.92 89.43		0.265		
R [3]		>20		27.79 1		123.99 0.450		26.41		146.44 0.467		28.03	133.39		0.456	
igeN	et σ_n	$\sigma_n = 0.05$		Deblur (Gaussian)				Deblur (motion)					SR (×4)			
thod	Ν	NFEs \downarrow		$PSNR \uparrow FID \downarrow$		LPIPS	\downarrow PS	SNR↑	$FID\downarrow$	$\downarrow LPIPS \downarrow$		$PSNR \uparrow FID \downarrow$		↓]	\downarrow LPIPS \downarrow	
PIR		100 22		.80	93.36 0.355		24.01		124.63	0.366		23.18	106.32		0.371	
5[1]	1] 1000		19	19.58 138.80 0.434]	17.75 184.45		0.491		22.16	114.9	93	0.383		
RM [RM [2] 20		22	22.33 160		0.427				_		23.89	89 118.55		0.358	
[R [3]		>20 23.86		.86	189.92	0.476		23.60	3.60 210.31		0.489		23.99 204.8		3 0.475	
<u>)</u>	$\sigma_n = 0.0$	= 0.0 Inpaint (box)) Inpaint (random)			Del	blur (Gaus	Del	olur (mo	tion) SR		SR (×4	K (×4)		
od	NFEs \downarrow	$\overline{\text{FID}}\downarrow$	LPIPS \downarrow	PSNR ↑	$FID\downarrow$	LPIPS ↓	PSNR↑	$FID\downarrow$	LPIPS \downarrow	PSNR↑	FID ↓	LPIPS \downarrow	$PSNR\uparrow$	$FID\downarrow$	LPIPS .	
[R	20	35.72	0.117	34.03	30.81	0.116	30.74	46.64	0.170	37.03	20.11	0.084	29.17	58.02	0.187	
R	100	25.64	0.107	36.17	13.68	0.066	31.00	39.27	0.152	37.53	11.54	0.064	29.52	47.80	0.174	
1]	1000	43.49	0.145	34.65	33.14	0.105	27.31	51.23	0.192	26.73	58.63	0.222	27.64	59.06	0.209	
VI [2] [3]	20 >20	37.05	0.119	31.83	56.6U -	0.164 -	28.40 30 52	67.99 96.16	0.238	-	- 27 55	- 0.233	30.09 30 41	68.59 96.16	0.188	

AN	TITA	TIV	E RI	ESUL	TS												
IQ	σ_n	$\sigma_n = 0.05$		Deblur (Gaussian)				Deblur (motion)					SR (×4)				
thod	N	$FEs \downarrow$	PSI	NR ↑	FID ↓	LPIPS	\downarrow PS	SNR ↑	$FID\downarrow$	LPIPS ↓		PSNR ↑	FID	↓]	$\Box PIPS \downarrow$		
PIR		100	27	7.36	59.65	0.236	r 2	26.57	65.78	0.255		26.64	65.77		0.260		
5 [1] RM [2 R [3]	2]	1000 20 >20	25 25 27	5.46 5.93 7 .79	65.570.247101.890.298123.990.450			23.31 - 26.41	73.31 0.289 146.44 0.467		89 67	25.77 27.92 28.03	67.01 89.43 133.39		0.256 0.265 0.456		
ageNo	et σ_n	= 0.05	5	Deblu	eblur (Gaussian)			Del	olur (mo		SR (×4)						
thod	Ν	IFEs ↓	\downarrow PSNR \uparrow		FID↓ LPIPS		\downarrow PSNR \uparrow		FID ↓	\downarrow LPIPS \downarrow		PSNR↑	FID	↓ I	$\square PIPS \downarrow$		
fPIR		100	22	2.80	93.36	0.355	24.01		124.63	3 0.366		23.18	106.32		0.371		
5 [1] RM [2 IR [3]	2]	1000 20 >20	19.58 22.33 23.86		138.80 160.73 189.92	$0.434 \\ 0.427 \\ 0.476$	17.75 - 23.60		184.45 - 210.31	0.491 - 0.489		22.16 23.89 23.99	114.93 118.55 204.83		0.383 0.358 0.475		
2	$\sigma_n = 0.0$	= 0.0 Inpaint (box)		x) Inpaint (random)			Del	Deblur (Gaussian) D			Deblur (motion)			SR (×4)			
od	NFEs \downarrow	FID↓	LPIPS \downarrow	PSNR ↑	FID↓	LPIPS \downarrow	PSNR↑	$\mathrm{FID}\downarrow$	LPIPS \downarrow	PSNR \uparrow	$FID\downarrow$	LPIPS \downarrow	PSNR ↑	FID ↓	LPIPS 🗸		
IR IR	20 100	35.72 25.64	0.117 0.107	34.03 36.17	30.81 13.68	0.116 0.066	30.74 31.00	46.64 39.27	0.170 0.152	37.03 37.53	20.11 11.54	0.084 0.064	29.17 29.52	58.02 47.80	0.187 0.174		
1] M [2] [3]	1000 20 >20	43.49 37.05 -	0.145 0.119 -	34.65 31.83 -	33.14 56.60 -	0.105 0.164 -	27.31 28.40 30.52	51.23 67.99 96.16	0.192 0.238 0.350	26.73 - 38.39	58.63 - 27.55	0.222	27.64 30.09 30.41	59.06 68.59 96.16	0.209 0.188 0.362		

MORE INFORMATION

- Web https://yuanzhi-zhu.github.io/about/
- Email yuazhu@student.ethz.ch
 - kai.zhang@vision.ee.ethz.ch
- Arxiv https://arxiv.org/abs/2305.08995
- GitHub https://github.com/yuanzhizhu/DiffPIR
- WeChat yuanzhi-zhu

DIFFUSION ART QR CODE

